Группа авторов

North American Agroforestry


Скачать книгу

M., Albaugh, T. J., Heiderman, R. R., Leggett, Z., Stape, J. L., King, K., . . . King, J. S. (2014). Evaluating changes in switchgrass physiology, biomass, and light‐use efficiency under artificial shade to estimate yields if intercropped with Pinus taeda L. Agroforestry Systems, 88, 489‐503. https://doi.org/10.1007/s10457‐014‐9708‐3

      2 Allen, S. C., Jose, S., Nair, P. K. R., Brecke, B. J., Nair, V. D., Graetz, D. A., & Ramsey, C. L. (2005). Nitrogen mineralization in a pecan (Carya illinoensis K. Koch)–cotton (Gossypium hirsutum L.) alley cropping system in the southern United States. Biology and Fertility of Soils, 41, 28–37.

      3 Allen, S. C., Jose, S., Nair, P. K. R., Brecke, B. J., Nkedi‐Kizza, P., & Ramsey, C. L. (2004a). Safety‐net role of tree roots: Evidence from a pecan (Carya illinoensis K. Koch)–cotton (Gossypium hirsutum L.) alley cropping system in the southern United States. Forest Ecology and Management, 192, 395–407.

      4 Allen, S. C., Jose, S., Nair, P. K. R., Brecke, B. J., & Ramsey, C. L. (2004b). Competition for 15N‐labeled fertilizer in a pecan (Carya illinoensis K. Koch)–cotton (Gossypium hirsutum L.) alley cropping system in the southern United States. Plant and Soil, 263, 151–164.

      5 Alley, J. L., Garrett, H. E., McGraw, R. L., & Blanche, C. A. (1998). Forage legumes as living mulches for trees in agroforestry practices: Preliminary results. Agroforestry Systems, 44, 281–291.

      6 Altieri, M. A. (1991). Increasing biodiversity to improve pest management in agro‐ecosystems. In D. L. Hawksworth (Ed.), The biodiversity of microorganisms and invertebrates: Its role in sustainable agriculture (pp. 165–182). Wallingford, UK: CAB International.

      7 Artru, S., Garré, S., Dupraz, C., Hiel, M. P., Blitz‐Frayret, C., & Lassois, L. (2017). Impact of spatio‐temporal shade dynamics on wheat growth and yield, perspectives for temperate agroforestry. European Journal of Agronomy, 82, 60–70.

      8 Asbjornsen, H., Shepherd, G., Helmers, M., & Mora, G. (2008). Seasonal patterns in depth of water uptake under contrasting annual and perennial systems in the Corn Belt region of the midwestern US. Plant and Soil, 308, 69–92.

      9 Atangana, A., Khasa, D., Chang, S., & Degrande, A. (2014). Tropical agroforestry. Dordrecht, the Netherlands: Springer Nature.

      10 Bagley, W. T. (1964). Responses of tomatoes and beans to windbreak shelter. Journal of Soil and Water Conservation, 19, 71–73.

      11 Baraldi, R., Bertazza, G., Bogino, J., Luna, V., & Bottini, R. (1995). The effect of light quality on Prunus cerasus: II. Changes in hormone levels in plants grown under different light conditions. Photochemistry and Photobiology, 62, 800–803. https://doi.org/10.1111/j.1751‐1097.1995.tb08732.x

      12 Bobryk, C. W., Rega, C. C., Bardhan, S., Farina, A., He, H., & Jose, S. (2016). Assessing structural and compositional resources in temperate agroforestry systems using soundscape analysis. Agroforestry Systems, 90, 997–1008.

      13 Bonilla, C. A., Muñoz, J. F., & Vauclin, M. (1999). Opus simulation of water dynamics and nitrate transport in a field plot. Ecological Modelling, 122, 69–80. https://doi.org/10.1016/S0304‐3800(99)00119‐2

      14 Boring, L. R., & Swank, W. T. (1984). The role of black locust (Robinia pseudoacacia) in forest succession. Journal of Ecology, 72, 749–766.

      15 Brandle, J. R., Hodges, L., & Zhou, X. (2004). Windbreaks in sustainable agriculture. Agroforestry Systems, 61, 65–78.

      16 Brenner, A. J. (1996). Microclimatic modifications in agroforestry. In C.K. Ong and P. Huxley (Eds.), Tree–crop interactions: A physiological approach (pp. 159–187). Wallingford, UK: CAB International.

      17 Brooker, R. W., & Callaghan, T. V. (1998). The balance between positive and negative plant interactions and its relationship to environmental gradients: A model. Oikos, 81, 196–207.

      18 Bugg, R. L., Sarrantonio, M., Dutcher, J. D., & Phatak, S. C. (1991). Understory cover crops in pecan orchards: Possible management systems. American Journal of Alternative Agriculture, 6, 50–62.

      19 Burgess, S. S. O., Adams, M. A., Turner, N. C., & Ong, C. K. (1998). The redistribution of soil water by tree root systems. Oecologia, 115, 306–311. https://doi.org/10.1007/s004420050521

      20 Burner, D. M. (2003). Influence of alley crop environment on orchardgrass and tall fescue herbage. Agronomy Journal, 95, 1163–1171. https://doi.org/10.2134/agronj2003.1163

      21 Caldwell, M. M., & Richards, J. H. (1989). Hydraulic lift: Water efflux from upper roots improves effectiveness of water uptake by deep roots. Oecologia, 79, 1–5. https://doi.org/10.1007/BF00378231

      22 Cannell, M. G. R., van Noordwijk, M., & Ong, C. K. (1996). The central agroforestry hypothesis: The trees must acquire resources that the crop would not otherwise acquire. Agroforestry Systems, 34, 27–31.

      23 Casper, B. B., & Jackson, R. B. (1997). Plant competition underground. Annual Review of Ecology and Systematics, 28, 545–570. https://doi.org/10.1146/annurev.ecolsys.28.1.545

      24 Chifflot, V., Bertoni, G., Cabanettes, A., & Gavaland, A. (2006). Beneficial effects of intercropping on the growth and nitrogen status of young wild cherry and hybrid walnut trees. Agroforestry Systems, 66, 13–21.

      25 Cleugh, H. A. (2002). Field measurements of windbreak effects on airflow, turbulent exchanges and microclimates. Australian Journal of Experimental Agriculture, 42, 665–677.

      26 Corak, S. J., Blevins, D. G., & Pallardy, S. G. (1987). Water transfer in an alfalfa–maize association: Survival of maize during drought. Plant Physiology, 84, 582–586.

      27 Davis, J. E., & Norman, J. M. (1988). Effects of shelter on plant water use. Agriculture, Ecosystems & Environment, 22–23, 393–402. https://doi.org/10.1016/0167‐8809(88)90034‐5

      28 Davis, M. H., & Simmons, S. R. (1994a). Tillering response of barley to shifts in light quality caused by neighboring plants. Crop Science, 34, 1604–1610. https://doi.org/10.2135/cropsci1994.0011183X003400060033x

      29 Davis, M.H, & Simmons, S. R. (1994b). Far‐red light reflected from neighboring vegetation promotes shoot elongation and accelerate flowering in spring barley plants. Plant, Cell & Environment, 17, 829–836. https://doi.org/10.1111/j.1365‐3040.1994.tb00177.x

      30 Dawson, L. A., Duff, E. I., Campbell, C. D., & Hirst, D. J. (2001). Depth distribution of cherry (Prunus avium L.) tree roots as influenced by grass root competition. Plant and Soil, 231, 11–19.

      31 Dawson, T. E. (1993). Hydraulic lift and water use by plants: Implications for water balance, performance and plant–plant interactions. Oecologia, 95, 565–574.

      32 Delate, K., Holzmueller, E., Mize, C., Frederick, D., & Brummer, C. (2005). Tree establishment and growth using forage ground covers in an alley‐cropped system. Agroforestry Systems, 65, 43–52.

      33 Dupraz, C., Simorte, V., Dauzat, M., Bertoni, G., Bernadac, A., & Masson, P. (1998). Growth and nitrogen status of young walnuts as affected by intercropped legumes in a Mediterranean climate. Agroforestry Systems, 43, 71–80.

      34 Ehret, M., Graß, R., & Wachendorf, M. (2015). The effect of shade and shade material on white clover/perennial ryegrass mixtures for temperate agroforestry systems. Agroforestry Systems, 89, 557–570.

      35 Espeleta, J. F., West, J. B., & Donovan, L. A. (2004). Species‐specific patterns of hydraulic