Группа авторов

Handbook of Biomass Valorization for Industrial Applications


Скачать книгу

They have been mentioned as binders in mortar and building structures, solution and metal sequestration, recyclable plastic preservatives, gel forming base, polyurethane copolymers, etc.

      The utilization of binder and agglomeration are basic solid–solid dispersions with lignin helping to preserve & effect fluidity as am outcome of interactions between lignin–lignin, lignin–water [85]. By changing the lignin with amino and ammonium groups, metal sequestration may be improved. The amination of lignin along with epoxy amines increased the heavy metal sorption activity and also boosted ability of bile acid and cholesterol sorption. With regard to the economics of this very complex group, both evaporated lignin concentrate and spray-dried lignosulfonate as road binders are the main markets [86].

       It can be expected that lignin may be readily accessible raw material with comparatively less prices for manufacture of array products and dry lignin shall be available in near future. The advancement of applications based on lignin must go hand in hand with the planned enhanced manufacturing of lignin from pulp & paper industries. The application of lignin in wood adhesives and the utilization of lignin to manufacture aromatic chemicals are the promising value-added lignin applications.

       Development of imaginative applications for more sustainable materials through monomers as new building blocks & oligomers towards new chemistry (bio and chemical catalysis)

       Aromatics are on the run from biomass (lignin-, tannin- or sugar-based)

       Chemical waste management and forestry: combating climate change is equal to supplier of feedstock.

       Depolymerization makes lignin more reactive and more manageable.

       Membrane isolation has allowed commercially feasible reactive fraction purification for further processing.

       New polymers, resins, to make additives.

      1. O’Dea, R.M., Willie, J.A., Epps, T.H., 100th Anniversary of Macromolecular Science Viewpoint: Polymers from Lignocellulosic Biomass. Current Challenges and Future Opportunities. ACS Macro Lett., 9, 4, 476, 2020.

      2. Sun, Z., Fridrich, B., de Santi, A., Elangovan, S., Barta, K., Bright Side of Lignin Depolymerization: Toward New Platform Chemicals. Chem. Rev., 118, 2, 614, 2018.

      3. Schutyser, W., Renders, T., Van den Bosch, S., Koelewijn, S.F., Beckham, G.T., Sels, B.F., Chemicals from Lignin: An Interplay of Lignocellulose Fractionation, Depolymerisation, and Upgrading. Chem. Soc. Rev., 47, 3, 852, 2018.

      4. Tuck, C.O., Pérez, E., Horváth, I.T., Sheldon, R.A., Poliakoff, M., Valorization of Biomass: Deriving More Value from Waste. Science, 337, 6095, 695, 2012.

      5. Rafiee, M., Alherech, M., Karlen, S.D., Stahl, S.S., Electrochemical Aminoxyl-Mediated Oxidation of Primary Alcohols in Lignin to Carboxylic Acids: Polymer Modification and Depolymerization. J. Am. Chem. Soc., 141, 38, 15266, 2019.

      6. Holmberg, A.L., Reno, K.H., Wool, R.P., Epps, T.H., Biobased Building Blocks for the Rational Design of Renewable Block Polymers. Soft Matter, 10, 38, 7405, 2014.

      7. Llevot, A., Grau, E., Carlotti, S., Grelier, S., Cramail, H., From Lignin-derived Aromatic Compounds to Novel Biobased Polymers. Macromol. Rapid Commun., 37, 1, 9, 2016.

      8. Ren, T., Qi, W., Su, R., He, Z., Promising Techniques for Depolymerization of Lignin into Value-added Chemicals. ChemCatChem, 11, 2, 639, 2019.

      9. Ragauskas, A.J., Beckham, G.T., Biddy, M.J., Chandra, R., Chen, F., Davis, M.F., Davison, B.H., Dixon, R.A., Gilna, P., Keller, M., Langan, P., Naskar, A.K., Saddler, J.N., Tschaplinski, T.J., Tuskan, G.A., Wyman, C.E., Lignin Valorization: Improving Lignin Processing in the Biorefinery. Science, 344, 6185, 1, 2014.

      10. Rinaldi, R., Jastrzebski, R., Clough, M.T., Ralph, J., Kennema, M., Bruijnincx, P.C.A., Weckhuysen, B.M., Paving the Way for Lignin Valorisation: Recent Advancesin Bioengineering, Biorefining and Catalysis. Angew. Chem. Int. Ed., 55, 29, 8164, 2016.

      11. He, Q., Ziegler-Devin, I., Chrusciel, L., Obame, S.N., Hong, L., Lu, X., Brosse, N., Lignin-First Integrated Steam Explosion Process for Green Wood Adhesive Application. ACS Sustain. Chem. Eng., 8, 13, 5380, 2020.

      12. Parsell, T., Yohe, S., Degenstein, J., Jarrell, T., Klein, I., Gencer, E., Hewetson, B., Hurt, M., Kim, J.I., Choudhari, H., Saha, B., Meilan, R., Mosier, N., Ribeiro, F., Delgass, W.N., Chapple, C., Kenttämaa, H.I., Agrawal, R., Abu-Omar, M.M., A Synergistic Biorefinery Based on Catalytic Conversion of Lignin prior to Cellulose Starting from Lignocellulosic Biomass. Green Chem., 17, 3, 1492, 2015.

      13. Dutta, S., Wu, K.C.W., Saha, B., Emerging Strategies for Breaking the 3D Amorphous Network of Lignin. Catal. Sci. Technol., 4, 11, 3785, 2014.

      14. Vanholme, R., Morreel, K., Darrah, C., Oyarce, P., Grabber, J.H., Ralph, J., Boerjan, W., Metabolic Engineering of Novel Lignin in Biomass Crops. New Phytol., 196, 4, 978, 2012.

      16. Gandini, A., The Irruption of Polymers from Renewable Resources on the Scene of Macromolecular Science and Technology. Green Chem., 13, 5, 1061, 2011.

      17. Nilsson, H., Galland, S., Larsson, P.T., Gamstedt, E.K., Nishino, T., Berglund, L.A., Iversen, T., A Non-Solvent Approach For High-Stiffness All-cellulose Biocomposites based on Pure Wood Cellulose. Compos. Sci. Technol., 70, 12, 1704, 2010.

      18. Youssef, A.M. and El-Sayed, S.M., Bionanocomposites Materials for Food Packaging Applications: Concepts and Future Outlook. Carbohydr. Polym., 193, 19, 2018.

      19. Ralph, J., Hydroxycinnamates in lignification. Phytochem. Rev., 9, 65, 2010.

      20. Davis, R., Tao, L., Tan, E., Biddy, M.J., Beckham, G.T., Scarlata, C., Jacobson, J., Cafferty, K., Ross, J., Lukas., J., In Process Design and Economics for the Conversion of Lignocellulosic Biomass to Hydrocarbons: Dilute-Acid Prehydrolysis and Enzymatic Hydrolysis Deconstruction of Biomass to Sugars and Biological Conversion of Sugars to Hydrocarbons, Laboratory NRE (Ed.), NREL, Golden, CO, 2013.

      21. Ragauskas, A.J., Beckham, G.T., Biddy, M.J., Chandra, R., Chen, F., Davis, M.F., Davison, B.H., Dixon, R.A., Gilna, P., Keller, M., Langan, P., Naskar, A.K., Saddler, J.N., Tschaplinski, T.J., Tuskan, G.A., Wyman, C.E., Lignin valorization: improving lignin processing in the biorefinery. Science, 344, 6185, 2014.

      22. Zakzeski, J., Bruijnincx, P.C.A., Jongerius, A.L., Weckhuysen, B.M., The catalytic valorization of lignin for the production of renewable chemicals. Chem. Rev., 110, 3552, 2010.

      23. Martínez, A.T., Speranza, M., Ruiz-Duen, F.J., Ferreira, P., Camarero, S., Guillen, F., Martınez, M.J., Gutierrez, A., delRıo, J.C., Biodegradation of lignocellulosics: microbial, chemical, and enzymatic aspects of the fungal attack of lignin. Int. Microbiol., 8, 195, 2010.

      24. Wagner, A., Tobimatsu, Y., Phillips, L., Flint, H., Geddes, B., Lu, F., Ralph, J., Syringyl lignin production in conifers: proof of concept in a Pine tracheary element system. Proc. Natl. Acad. Sci., 112, 6218, 2015.

      25. Sainsbury, P.D., Hardiman, E.M., Ahmad, M., Otani, H., Seghezzi, N., Eltis, L.D., Bugg, T.D.H., Breaking down lignin to high-value chemicals: the conversion of lignocellulose to vanillin in a gene deletion mutant of Rhodococcus jostii RHA1. ACS Chem Biol., 18;8, 10, 2151, 2013.

      26. Thompson, B., Machas, M., Nielsen, D.R., Creating pathways towards aromatic building blocks and fine chemical. Curr. Opin. Biotechnol., 36, 1, 2015.

      27. Chundawat, S.P.S., Beckham, G.T., Himmel, M.E., Dale, B.E., Deconstruction of lignocellulosic biomass to fuels and chemicals.