Cheanyeh Cheng

Enzyme-Based Organic Synthesis


Скачать книгу

acids to mitochondria for subsequent β‐oxidation. CrAT is homologous to other carnitine acyltransferases, particularly, to carnitine palmitoyltransferase 1 (CPT I) that serves the regulation of long‐chain fatty acid metabolism. Therefore, the reversibly catalyzed reaction between acetyl‐CoA and carnitine by CrAT makes CrAT a regulator for the cellular pool of CoA that, in turn, plays a role as a carrier of activated acetyl groups in the oxidation of energy metabolism substrates and in the synthesis of fatty acids and lipids. It is also known that the accumulation of fatty acyl‐CoAs in heart may induce apoptosis and inflammation and acetyl‐carnitine improves cognition in the brain [65–67].

Chemical reaction depicting protein acetylation with CRTase and DAMC without involving acetyl-CoA.

      Source: Arora et al. [71].

      1 1 Guo, F. and Berglund, P. (2017). Green Chem. 19: 333–360.

      2 2 Fuchs, M., Farnberger, J.E., and Kroutil, W. (2015). Eur. J. Org. Chem. 6965–6962.

      3 3 Truppo, M.D., Rozzell, J.D., Moore, J.C., and Turner, N.J. (2009). Org. Biomol. Chem. 7: 395–398.

      4 4 Stewart, J.D. (2001). Current Opin. Chem. Biol. 5: 120–129.

      5 5 Park, E., Kim, M., and Shin, J.‐S. (2010). Adv. Synth. Catal. 352: 3391–3398.

      6 6 Land, H., Hendil‐Forssell, P., Martinelle, M., and Berglund, P. (2016). Catal. Sci. Technol. 6: 2897–2900.

      7 7 Kohls, H., Anderson, M., Dickerhoff, J. et al. (2015). Adv. Synth. Catal. 357: 1808–1814.

      8 8 Sattler, J.H., Fuchs, M., Mutti, F.G. et al. (2014). Angew. Chem., Int. Ed. 53: 14153–14157.

      9 9 Mutti, F.G. and Kroutil, W. (2012). Adv. Synth. Catal. 354: 3409–3413.

      10 10 Fuchs, C.S., Simon, R.C., Riethorst, W. et al. (2014). Biorg. Med. Chem. 22: 5558–5562.

      11 11 Savile, C.K., Janey, J.M., Mundorff, E.C. et al. (2010). Science 329: 305–309.

      12 12 Truppo, M.D., Strotman, H., and Hughes, G. (2012). ChemCatChem 4: 1071–1074.

      13 13 Andrade, L.H., Kroutil, W., and Jamison, T.F. (2014). Org. Lett. 16: 6092–6095.

      14 14 Wohlgemuth, R. (2005). Chimia 59: 735–740.

      15 15 Křen, V. and Thiem, J. (1997). Chem. Chem. Soc. Rev. 26: 463–473.

      16 16 Gloster, T.M. (2014). Curr. Opin. Chem. Biol. 28: 131–141.

      17 17 Leloir, L.F. (1971). Science 172: 1299–1303.

      18 18 Koeller, K.M. and Wong, C.‐H. (2000). Chem. Rev. 100: 4465–4493.

      19 19 Tsuji, S. (1996). J. Biochem. 120: 1–13.

      20 20 Sears, P. and Wong, C.‐H. (1998). Cell. Mol. Life Sci. 54: 223–252.

      21 21 Wong, C.‐H., Haynie, S.L., and Whitesides, G.M. (1982). J Org. Chem. 47: 5416–5418.

      22 22 Křen, V. (1997). Top. Curr. Chem. 186: 45–64.

      23 23 Riva, S.J. (2002). Mol. Catal. B Enzym. 19‐20: 43–54.

      24 24 Kaulpiboon, J., Pongsawasdi, P., and Zimmermann, W. (2007). FEBS J. 274: 1001–1010.

      25 25 Van der Veen, B.A., van Alebeek, G.‐J.W.M., Uitdehaag, J.C.M. et al. (2000). Eur. J. Biochem. 267: 658–665.

      26 26 Pitcher, J., Smythe, C., and Cohen, P. (1988). Eur. J. Biochem. 176: 391–395.

      27 27 Hurley, T.D., Stout, S., Miner, E. et al. (2005). J. Biol. Chem. 280: 23892–23899.

      28 28 Smythe, C. and Cohen, P. (1991). Eur. J. Biochem. 200: 625–631.

      29 29 Zeqiraj, E., Tang, X., Hunter, R.W. et al. (2014). Proc. Natl. Acad. Sci. USA 111: E2831–E2840.

      30 30 Zhang, Z., Gildersleeve, J., Yang, Y.‐Y. et al. (2004). Science 303: 371–373.

      31 31 Wong, C.‐H. (2005). J. Org. Chem. 70: 4219–4225.

      32 32 Rush, R.S., Derby, P.L., Smith, D.M. et al. (1995). Anal. Chem. 67: 1442–1452.

      33 33 Sears, P. and Wong, C.‐H. (2001). Science 291: 2344–2350.

      34 34 Macmillan, D. and Bertozzi, C.R.A. (2004). Chem. Int, Ed. 43: 1355–1359.

      35 35 Wang, L. and Schult, P.G. (2005). Angew. Chem. Int. Ed. 44: 34–66.

      36 36 Liu, H., Wang, L., Brock, A. et al. (2003). J. Am. Chem. Soc. 125: 1702–1703.

      37 37 Xu, R., Hanson, S.R., Zhang, Z. et al. (2004). J. Am. Chem. Soc. 126: 15654–15655.

      38 38 McMurry, J.; Castellion, M.E. (1999). Fundamentals of General, Organic, and Biological Chemistry, 3rd Ed., Prentice Hall, New Jersey: Upper Saddle River, pp. 673.

      39 39 Uliana, A.S., Crespo, P.M., Martina, J.A. et al. (2006). J. Biol. Chem. 281: 32852–32860.

      40 40 Giraudo, C.G. and Maccioni, H.J.F. (2003). J. Biol. Chem. 278: 40262–40271.

      41 41 Chapman, E. and Wong, C.‐H. (2002). Bioorg. Med. Chem. 10: 551–555.

      42 42 Renzone, G., Salzano, A.M., Arena, S.D. et al. (2006). J. Proteome Res. 5: 2019–2024.

      43 43 Jin, Y., Molt, R.W. Jr., and Blackburn, G.M. (2017). Top. Curr. Chem.(Z) 375: 36–66.

      44 44 Thiaville, J.J., Flood, J., Yurgrl, S. et al. (2016). ACS Chem. Biol. 11: 2304–2311.

      45 45 Sfeir, C., Fang, P.‐A., Jayaraman, T. et al. (2014). Acta Biomater. 10: 2241–2249.

      46 46 Rivière, L., Moreau, P., Allmann, S. et al. (2009). PNAS 106: 12694–12699.

      47 47 Kuang, Y., Salem, N., Wang, F. et al. (2007). J. Biochem. Biophys. Methods 70: 649–655.

      48 48 Tan, D.‐X., Hardeland, R., Back, K. et al. (2016). J. Pineal Res. 61: 27–40.

      49 49 Weissbach, H., Redfield, B.G., and Axelrod, J. (1960). Biochim. Biophys. Acta 43: 352–353.

      50 50 Axelrod, J. and Weissbach, H. (1960). Science 131: 1312.

      51 51 Liu, J., Ng, T., Rui, Z. et al. (2014). Angew. Chem. Int. Ed. 53: 136–139.

      52 52 Witkop, B. (1998). Heterocycles 49: 9–27.

      53 53 Granacher, R.P. and Baldessarini, R.J. (1976). Clin. Neuropharmacol. 1: 63–79.

      54 54 Brockhausen, I., Nair, D.G., Chen, M. et al. (2016). Biochem. Cell Biol. 94: 197–204.

      55 55 Vetting, M.W., de Carvalho, L.P.S., Yu, M. et al. (2005). Arch. Biochem. Biophys. 433: 212–226.

      56 56