London: The Institute of Metals 314 pages.
21 Frost, H.J. and Ashby, M.F. (1982). Deformation‐Mechanism Maps. The Plasticity and Creep of Metals and Ceramics. Oxford: Pergamon Press 1982.
22 Garofalo, F. (1965). Fundamentals of Creep and Creep‐Rupture in Metals. New York: The McMillan 1965.
23 Gittus, J. (1975). Creep, Viscoelasticity and Creep Fracture in Solids. New York‐Toronto: Wiley.
24 Glen, J.W. (1955). The creep of polycrystalline ice. Proc. Roy. Soc. London, Series A 228 (1175): 519–538.
25 Gold, L.W. (1965). The initial creep of columnar‐grained ice, part I: observed behaviour, part II: analysis. Can. J. Phys. 43 (8): 1414–1434.
26 Gold, L.W. (1972a). The failure process in columnar grained ice, based on Ph.D. Thesis, McGill University, Technical Paper No. 369 of the Division of Building Research. National Research Council of Canada (NRCC), Ottawa, NRCC‐12637, 108 pages+ Tables and Figures.
27 Gold, L.W. (1972b). Philos. Mag. 26: 311.
28 Gold L.W., and Sinha N.K. (1980). The rheological behaviour of ice at small strains. Physics and Mechanics of Ice. Proc. International Union of Theoretical and Applied Mechanics (IUTAM) Symposium, Copenhagen, August 1979, Springer‐Verlag Berlin Heidelberg, pp. 117–128.
29 Gowlett, J.A.J. (2016). The discovery of fire by humans: a long and convoluted process. Philos. Trans. R. Soc. B 371: 20150164. http://dx.doi.org/10.1098/rstb.2015.0164.
30 Greaves, G.N. and Sen, S. (2007). Inorganic glasses, glass‐forming liquids and amorphous solids. Adv. Phys. 56 (1): 1–166.
31 Henderson, G.S., Calas, G., and Stebbins, J.F. (2006). The structure of silicate glasses and melts. Elements 2 (5): 269–273. https://doi.org/10.2113/gselements.2.5.269.
32 Herring, G. (1950). Diffusional viscosity of a polycrystalline solid. J. Appl. Phys. 21: 437–445.
33 Holdsworth, S.R., Askins, M., Baker, A. et al. (2005). Factors influencing creep model equation selections. In: Creep & Fracture in High Temperature Components – Design & Life Assessment Issues, ECCC Creep Conference, London (eds. I.A. Shibli, S.R. Holdsworth and G. Merckling), 380–391. Lancaster, PA, USA: DEStech Publications, Inc.
34 Hull, D., and Bacon, D.J. (1984). Introduction to Dislocations, 3rd Edition, reprinted 1989, International Series on Materials Science and Technology, Vol. 37, Pergamon Press, Oxford, UK, 257 pages.
35 Karato, S. (1998). A dislocation model of seismic wave attenuation and micro‐creep in the earth: Harold Jeffreys and the rheology of the solid earth. Pure Appl. Geophys. 153: 239–256. https://doi.org/10.1007/s000240050195.
36 Kassner, M.E. (2015). Fundamentals of Creep in Metals and Alloys, 3e. Butterworth‐Heinemann (January 22, 2015), 356 pages.
37 Keay, J. (2004). “India: a history”, paperback edition (ISBN‐13: 978‐0‐00‐725928‐1; ISBN 10: 0‐00‐725928‐X) published by Harper Perennial 2004, Harper Collins Publishers India, A‐53, Sector 57, Noida, Uttar Pradesh‐201301, India, 576 pages.
38 Kimura, K., Kushima, H., and Sawada, K. (2009). Long‐term creep deformation property of modified 9Cr‐1Mo steel. Mat. Sci. Eng. A, Special Issue, U. Glatzel, G. Eggeler, G. Kostorz, (eds.) 510‐511: 58–63.
39 Kuhn, T.S. (1996). The Structure of Scientific Revolutions, 3e. Chicago, IL: University of Chicago Press.
40 Lapidus, D.F. (1987). Dictionary of Geology and Geophysics. New York, NY, Oxford, England: The Facts on File Publications 347pages.
41 Liboutry, L. (1965). Traite’ de Glaciologie, 2. Paris: Masson.
42 Michel, B. (1978). Ice Mechanics. Quebec, Canada: Les Presses De L’universite’ Laval 499 pages.
43 Monkman, F.C. and Grant, N.J. (1956). An empirical relationship between rupture life and minimum creep rate in creep rupture tests. Proc Am. Soc. Test. Mater. 56: 593–605.
44 Morral, F.R. (1968). J. Meteorol. 20: 18. (July 1968).
45 Nabarro, F.R.M. (1948). Deformation of crystals by the motion of single ions. In: Report on a Conference on the Strength of Solids, The Physical Society, London.
46 Nabarro, F.R.N. (1967). The Theory of Crystal Dislocations. Oxford University Press.
47 Nabarro, F.R.N. (1987). Theory of Crystal Dislocations. New York: Dover.
48 Nabarro, F.R.N. and de Villiers, H.L. (1995). The Physics of Creep. London: Taylor & Francis Ltd.
49 Nadai, A. (1938). The Influence of Time on Creep, the Hyperbolic Sine Creep Law. Macmillan, New York: Stephen Timoshenko Anniversary Volume.
50 Nakada, M. and Lambeck, K. (1987). Glacial rebound and relative sea‐level variations: a new appraisal. Geophys. J. R. Astron. Soc. 90: 171–224.
51 National Geographic Society (1979). Mysteries of the Ancient World”, published by The Special Publications Division. Washington, D.C.: National Geographic Society, See particularly Tee Loftin, ‘Ancient India: cities lost in time’, pp. 80–99.
52 Norton, F.H. (1929). The Creep of Steel at High Temperature. New York: McGraw‐Hill.
53 Odqvist, F.K.G. (1974). Mathematical Theory of Creep and Creep Rupture, 2e. London, UK: Oxford University Press, at the Clarendon Press 200 pages.
54 Parker, J.D. and Wilshire, B. (1980). Mater. Sci. Eng. 43: 271.
55 Paterson, W.S.B. (1994). The Physics of Glaciers, First Edition, 1969, Completely Revised and Updated Third Edition, 1994. Oxford, England: Pergamon/Elsevier Science Ltd.1969
56 Plummer, C.C. and McGeary, D. (1985). Physical Geology, 3e. College Division, Dubuque, Iowa, USA: Wm. C. Brown Publishers 511 pages.
57 Pounder, E.R. (1965). The Physics of Ice. Oxford: Pergamon Press Ltd. 151 pages.
58 Ross, E.W. and Sims, C.T. (1987). Nickel‐Base Alloys. In: Superalloys II (eds. C.T. Sims, N.S. Stoloff and W.C. Hagel), 97–133. New York), Chapter 4: A Wiley‐Interscience Publication, Wiley.
59 Schulson, E.M. and Duval, P. (2009). Creep and Fracture of Ice. Cambridge University Press 416 pages.
60 Shokr, M.E. and Sinha, N.K. (2015). “Sea Ice: Physics and Remote Sensing”, Geophysical Monograph 209. New York: American Geophysical Union (AGU) and Wiley 579p.
61 Simpson, J.A. and Weiner, E.S.C. (1989). The Oxford English Dictionary. Oxford: Clarendon Press.
62 Sinha, N.K. (1971). On the studies of rheo‐optical response of plate glass in a wide temperature range. Ph.D. Thesis, Faculty of Engineering, University of Waterloo, Waterloo, Canada.
63 Sinha, N.K. (1977). Technique for studying structure of sea ice. J. Glaciol. 18 (79): 315–323.
64 Sinha, N.K. (1978a). Rheology of columnar grained ice. Exp. Mech. 18 (12): 464–470.
65 Sinha, N.K. (1978b). Short‐term rheology of polycrystalline ice. J. Glaciol. 21 (85): 457–473.
66 Sinha, N.K. (1979). Grain boundary sliding in polycrystalline materials. Philosophical Magazine A 40 (6): 825–842.
67 Sinha, N.K. (2001). A Comparative Study of Strain Relaxation and Stress Relaxation in Nickel‐base Superalloy IN‐738LC. (ed. J.D. Parker), Proceedings of the 9th. Int. Conf. on Creep & Fracture of Engineering Materials & Structures, April 1–6, 2001, Swansea, UK. The Institute of Materials, London, pp. 393–403.
68 Sinha, N.K. (2006). Dynamic steady‐state tertiary creep in a nickel‐base single crystal superalloy at high temperatures. J. Mater. Sci. 41: 1855–1858.
69 Stephens, J., R. (1989). Superalloys, Supercomposites and Superceramics (eds. J.K. Tien and T. Caulfield), 9. Boston: Academic Press, Inc.
70 Wapniarsky, S., Rotem, A.I., and Rosen, A. (1991). Creep of Ti‐6Al‐4V titanium alloy at room temperature, In: Strength of