Группа авторов

Renewable Energy for Sustainable Growth Assessment


Скачать книгу

and X. Zhang, “The thermochemical conversion of biomass into biofuels,” in Biomass, Biopolymer-Based Materials, and Bioenergy: Construction, Biomedical, and other Industrial Applications, Elsevier, pp. 327–368, 2019.

      6. Z. Moravvej, M. A. Makarem, and M. R. Rahimpour, “The fourth generation of biofuel,” in Second and Third Generation of Feedstocks: The Evolution of Biofuels, Elsevier, pp. 557–597, 2019.

      7. C. C. Xu, B. Liao, S. Pang, L. Nazari, N. Mahmood, M.S.H.K Tushar, A. Dutta, and M.B Ray, “Biomass Energy,” in Comprehensive Energy Systems, vol. 1–5, Elsevier Inc., pp. 770–794, 2018.

      8. Y. Demirel, “Biofuels,” in Comprehensive Energy Systems, vol. 1–5, Elsevier Inc., pp. 875–908, 2018.

      9. C. L. Williams, A. Dahiya, and P. Porter, “Introduction to Bioenergy,” in Bioenergy, Elsevier, pp. 5–36, 2015.

      10. S. Khan, V. Paliwal, V. V. Pandey, and V. Kumar, “Biomass as Renewable Energy,” pp. 301–304, 2015.

      11. A. Ray and S. De, “Renewable Electricity Generation – Effect on GHG Emission,” in Encyclopedia of Renewable and Sustainable Materials, Elsevier, pp. 728–735, 2020.

      12. N. T. Kalyani and S. J. Dhoble, Chapter 10 - “Empowering the Future With Organic Solar Cell Devices,” in Nanomaterials for Green Energy, Elsevier Inc., pp. 325–350, 2018.

      13. S. Zafar, “What Is the Energy Crisis,” https://www.linkedin.com/pulse/what-energy-crisissultan-zafar-1, 2016.

      14. “Global Energy Review 2020 – Analysis - IEA.” https://www.iea.org/reports/global-energyreview-2020, 2020.

      15. V. Manieniyan, M. Thambidurai, and R. Selvakumar, “Study on Energy Crisis and the Future of Fossil,” Proc. SHEE, no. October, pp. 7–12, 2009.

      16. S. Mohammad, “Green electricity generation potential from biogas produced by anaerobic digestion of farm animal waste and agriculture residues in,” Renew. Energy, vol. 154, pp. 29–37, 2020, doi: 10.1016/j.renene.2020.02.102.

      17. A. Kounda, “India ’ s renewable energy generation grows 9 . 46 per cent in Jan 2020,” https://energy.economictimes.indiatimes.com/news/renewable/indias-renewable-energy-generation-grows-9-46-per-cent-in-jan-2020/74442008, 2020.

      18. H. S. K. Nathan and L. Hari, “Towards a new approach in measuring energy poverty: Household level analysis of urban India,” Energy Policy, vol. 140, p. 111397, 2020.

      20. A. A. Amrutha, P. Balachandra, and M. Mathirajan, “Role of targeted policies in mainstreaming renewable energy in a resource constrained electricity system: A case study of Karnataka electricity system in India,” Energy Policy, vol. 106, pp. 48–58, 2017.

      21. T. Kar and S. Keles, “Environmental impacts of biomass combustion for heating and electricity generation,” J. Eng. Res. Appl. Sci., vol. 5, no. December, pp. 458–465, 2016.

      22. N. L. Yadav, I. C., & Devi, “Biomass burning, regional air quality, and climate change,” Earth Syst. Environ. Sci., pp. 386–391, 2018.

      23. C. Scaraffuni, J. Repke, and M. Meyer, “Diauxie during biogas production from collagen-based substrates,” Renew. Energy, vol. 141, pp. 20–27, 2019.

      24. F. Bücker et al., “Fish waste : An ef fi cient alternative to biogas and methane production in an anaerobic mono-digestion system,” Renew. Energy, vol. 147, pp. 798–805, 2020.

      25. A. Ware and N. Power, “Biogas from cattle slaughterhouse waste : Energy recovery towards an energy self-suf fi cient industry in Ireland,” Renew. Energy, vol. 97, pp. 541–549, 2016.

      26. O. Kyung, J. Yong, J. Kim, and J. Woo, “Bench-scale production of sewage sludge derived-biodiesel ( SSD-BD ) and upgrade of its quality,” Renew. Energy, vol. 141, pp. 914–921, 2019.

      27. K. Malik, S. Ahlawat, N. Kumari, S. Mehta, and A. S. Kumar, “Bioconversion of paddy straw for bio-ethanol production,” J. Pharmacogn. Phytochem., vol. 9, no. 3, pp. 1091–1093, www.phyto-journal.com, 2020.

      28. B. B. Cardias, T. C. Trevisol, G. G. Bertuol, J. A. V. Costa, and L. O. Santos, “Hydrolyzed Spirulina Biomass and Molasses as Substrate in Alcoholic Fermentation with Application of Magnetic Fields,” Waste and Biomass Valorization, no. 0123456789, pp. 1–9, 2020.

      29. N. Sriram and M. Shahidehpour, “Renewable biomass energy,” 2005 IEEE Power Eng. Soc. Gen. Meet., vol. 1, pp. 612–617, 2005.

      30. D. Petković, “Large Biomass Burners for Fuel Switch in Existing Fossil Fuel Based Plants,” in Encyclopedia of Renewable and Sustainable Materials, Elsevier, pp. 403–406, 2020.

      31. F. W. Bai, S. Yang, and N. W. Y. Ho, “Fuel ethanol production from lignocellulosic biomass,” in Comprehensive Biotechnology, Elsevier, pp. 49–65, 2019.

      32. J. Huang, Y. Du, T. Bao, M. Lin, J. Wang, and S. T. Yang, “Production of n-butanol from cassava bagasse hydrolysate by engineered Clostridium tyrobutyricum overexpressing adhE2: Kinetics and cost analysis,” Bioresour. Technol., vol. 292, p. 121969, 2019.

      33. “Annual Reports | Ministry of Petroleum and Natural Gas | Government of India.” http://petroleum.nic.in/sites/default/files/AR_2019-20E.pdf, 2020.

      34. S. B. Montoro, J. Lucas, D. F. L. Santos, and M. S. S. M. Costa, “Anaerobic co-digestion of sweet potato and dairy cattle manure: A technical and economic evaluation for energy and biofertilizer production,” J. Clean. Prod., vol. 226, pp. 1082–1091, 2019.

      35. F. A. Gabra, M. H. Abd-Alla, A. W. Danial, R. Abdel-Basset, and A. M. Abdel-Wahab, “Production of biofuel from sugarcane molasses by diazotrophic Bacillus and recycle of spent bacterial biomass as biofertilizer inoculants for oil crops,” Biocatal. Agric. Biotechnol., vol. 19, p. 101112, 2019.

      36. N. S. P. M. S. Sajeev and M. L. J. G. Padmaja, “Bioethanol production from microwave - assisted acid or alkali - pretreated agricultural residues of cassava using separate hydrolysis and fermentation ( SHF ),” 3 Biotech, vol. 8, no. 1, p. 69, 2018.

      37. Y. Liu, W. Chen, Y. Huang, Y. Chang, I. Chu, S. Tsai, and Y. Wei, “Production of bioethanol from Napier grass via simultaneous sacchari fi cation and co-fermentation in a modi fi ed bioreactor,” Bioscience and Bioengineering, vol. 124, no. 2, pp. 184–188, 2017.

      39. W. Wu, W. Hung, K. Lo, Y. Chen, H. Wan, and K. Cheng, “Bioethanol Production from Taro Waste Using Thermo-tolerant Yeast Kluyveromyces marxianus K21,” Bioresour. Technol., 2015, vol. 201, pp. 27–32, 2016.

      40. R. C. Anyanwu, C. Rodriguez, A. Durrant, and A. G. Olabi, “Micro-Macroalgae Properties and Applications,” in Reference Module in Materials Science and Materials Engineering, Elsevier, 2018.

      41. K. Ling, W. Chen, H. Sheen, J. Chang, and C. Lin, “Bioethanol production from acid pretreated microalgal hydrolysate using microwave-assisted heating wet torrefaction,” Fuel, vol. 279, no. February, p. 118435, 2020.

      42.