в 3–5 раз. С исчезновением стимула глаз останавливается и возвращается в исходное положение.
Полученные данные не согласуются с гипотезой программированного движения, согласно которой программа формируется во время латентного периода или во время промежуточной фиксации. Поскольку в наших экспериментах испытуемый не имел никакой информации о характере предъявляемого стимула, естественно было бы ожидать, что формируемая программа движения и в условиях свободного рассматривания, и в условиях стабилизации должна быть одной и той же. В обоих сравниваемых условиях мы наблюдали бы сходные по своим характеристикам движения (скачки). Между тем по своему характеру движения оказались существенно различными: в условиях свободного рассматривания – скачок, в условиях стабилизации – скольжение.
С позиции гипотезы программированного движения следовало бы также ожидать, что в условиях стабилизации переходу скачка в скольжение должны предшествовать коррекция и перестройка сформированной в течение латентного периода программы, а значит, и остановка глаза (промежуточная фиксация). Между тем переход осуществлялся непосредственно – никаких промежуточных фиксаций мы не наблюдали.
Рис. 1.3. Изменение скорости «скользящих» движений в зависимости от угла рассогласования
I – в горизонтальной плоскости; II – в вертикальной плоскости; III – в вертикальной плоскости вниз
Как показали эксперименты, скорость скольжения (V) зависит от угла рассогласования: с возрастанием этого угла от 1 до 6° она увеличивается от 3 до 15 град/сек (рисунок 1.3). При дальнейшем возрастании угла рассогласования она не увеличивается оставаясь на уровне 15–17 град/сек, т. е. указанная зависимость проявляется только в определенных пределах (при углах рассогласования 1–6°).
Такое ограничение в отношении углов рассогласования пока не нашло достаточно четкого объяснения, однако можно предположить, что вопрос связан не с предельными углами рассогласования, а с максимальной скоростью скольжения, определяемой характеристиками системы.
Поскольку в условиях стабилизации стимул в течение всего времени эксперимента проецируется на одно и то же место сетчатки, в ходе скользящего движения глаза происходит его постепенное потускнение вплоть до полного исчезновения, т. е. видимая яркость стимула уменьшается до нуля. Как отмечалось, время исчезновения видимого стимула определяет величину скользящего движения.
Естественно, возникает вопрос о том, не оказывает ли видимая яркость стимула влияния и на другие характеристики скользящего движения и, прежде всего, на его скорость.
Для выяснения этого вопроса и была проведена вторая серия экспериментов, методика которой описана выше.
Как показали предварительные эксперименты этой серии, при изменении яркости стимула изменяется и скорость скользящих движений. Вместе с тем выяснилось, что скорость этих движений связана не с абсолютной величиной стимула,