История искусств показывает, что в результате долгих поисков неуловимого канона «совершенных» пропорций – такого, чтобы любое произведение искусства при его применении автоматически становилось эстетичным и приятным – выяснилось, что этим требованиям лучше всего удовлетворяет именно золотое сечение. Но почему?
Если подробнее рассмотреть примеры из мира природы и из мира искусства, окажется, что они заставляют задаваться вопросами на трех уровнях глубины. Прежде всего, это непосредственные вопросы: (а) все ли случаи появления числа φ в природе и искусстве, описанные в литературе, действительно имеют место или некоторые из них – всего лишь результаты неверных интерпретаций и всякого рода натяжек? (б) Если число φ и правда появляется в этих и других обстоятельствах, можем ли мы как-то это объяснить? Далее, если учесть, что мы придерживаемся определения «красоты», подобного, скажем, тому, которое дано в словаре Уэбстера: «Качество, которое делает объект приятным или приносит определенное удовлетворение» – возникает вопрос: есть ли у математики эстетическая составляющая? Если да, какова сущность этой составляющей? Это серьезный вопрос, поскольку, как заметил однажды американский архитектор, математик и инженер Ричард Бакминстер Фуллер (l895–l983): «Когда я работаю над какой-то задачей, то никогда не думаю о красоте. Думаю я только о том, как решить эту задачу. Но если я решу ее и решение окажется некрасивым, я буду знать, что ошибся». И, наконец, самый интересный вопрос звучит так: почему, собственно, математика столь могущественна и столь вездесуща? Благодаря чему математика и численные константы вроде золотого сечения играют столь важную роль во всем на свете – от фундаментальных теорий происхождения Вселенной до рынка ценных бумаг? Существует ли математика и ее принципы независимо от людей, которые ее открыли или обнаружили? Математична ли Вселенная по своей природе? Последний вопрос можно задать, переформулировав известный афоризм английского физика сэра Джеймса Джинса (1847–1946): может быть, и сам Бог – математик?
В этой книге я постараюсь обсудить все эти вопросы более или менее подробно с точки зрения увлекательной истории числа φ. История этой константы, временами запутанная, насчитывает тысячелетия и разворачивается на всех материках. Но при этом я надеюсь рассказать вам еще и интересную историю о человеческой психологии. Наш сюжет отчасти повествует о тех временах, когда физиками и математиками называли себя люди, которых попросту интересовали различные вопросы, разжигавшие в них любознательность. Зачастую подобные люди трудились и умирали, не зная, удастся ли результатам их трудов изменить ход научной мысли или они просто канут в Лету, не оставив и следа.
Однако прежде чем пуститься в этот путь, нам придется поближе познакомиться с числами вообще и с золотым сечением в частности. Откуда, в сущности, появилась сама идея золотого сечения? Что именно заставило Евклида задуматься о том, чтобы разделить отрезок именно в таком соотношении?