Posterior Cramér–Rao Lower Bound
To assess the performance of an estimator, a lower bound is always desirable. Such a bound is a measure of performance limitation that determines whether or not the design criterion is realistic and implementable. The Cramér–Rao lower bound (CRLB) is a lower bound that represents the lowest possible mean‐square error in the estimation of deterministic parameters for all unbiased estimators. It can be computed as the inverse of the Fisher information matrix. For random variables, a similar version of the CRLB, namely, the posterior Cramér–Rao lower bound (PCRLB) was derived in [52] as:
(4.19)
where
(4.20)
(4.21)
the sequence of posterior information matrices,
(4.22)
where
(4.23)
(4.24)
(4.25)
(4.26)
where
4.6 Concluding Remarks
The general formulation of the optimal nonlinear Bayesian filtering leads to a computationally intractable problem; hence, the Bayesian solution is a conceptual solution. Settling for computationally tractable suboptimal solutions through deploying different approximation methods has led to a wide range of classic as well as machine learning‐based filtering algorithms. Such algorithms have their own advantages, restrictions, and domains of applicability. To assess and compare such filtering algorithms, several performance metrics can be used including entropy, Fisher information, and PCRLB. Furthermore, the Fisher information matrix is used to define the natural gradient, which is helpful in machine learning.
Конец ознакомительного фрагмента.
Текст предоставлен ООО «ЛитРес».
Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес.
Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.