Группа авторов

Clinical Obesity in Adults and Children


Скачать книгу

of mothers with young‐onset type 2 diabetes. Diabetologia 2006; 49(8):1876–80. doi:10.1007/s00125‐006‐0285‐5

      48 48. Howie GJ, Sloboda DM, Kamal T, Vickers MH. Maternal nutritional history predicts obesity in adult offspring independent of postnatal diet. J Physiol 2009; 587(Pt 4):905–15. doi:10.1113/jphysiol.2008.163477

      49 49. Dong H‐P, Tan M‐Z, Liu Q‐J, Wang J, Zhong S‐B. The study on the effect of hyperglycemia on offspring fatty tissue metabolism during pregnancy. Eur Rev Med Pharmacol Sci. 2017; 21(16):3658–64.

      50 50. Su R, Yan J, Yang H. Transgenerational glucose intolerance of tumor necrosis factor with epigenetic alteration in rat perirenal adipose tissue induced by intrauterine hyperglycemia. J Diabetes Res 2016; 2016:4952801. doi:10.1155/2016/4952801

      51 51. Rajasingam D, Seed PT, Briley AL, Shennan AH, Poston L. A prospective study of pregnancy outcome and biomarkers of oxidative stress in nulliparous obese women. Am J Obstet Gynecol 2009;200(4):395.e1–9. doi:10.1016/j.ajog.2008.10.047

      52 52. Barker DJP. Fetal origins of cardiovascular disease. Ann Med 1999; 31(suppl 1):3–6. doi:10.1080/07853890.1999.11904392

      53 53. Ravelli GP, Stein ZA, Susser MW. Obesity in young men after famine exposure in utero and early infancy. N Engl J Med 1976; 295(7):349–53. doi:10.1056/NEJM197608122950701

      54 54. Kramer MS, Martin RM, Bogdanovich N, Vilchuk K, Dahhou M, Oken E. Is restricted fetal growth associated with later adiposity? Observational analysis of a randomized trial. Am J Clin Nutr 2014; 100(1):176–81. doi:10.3945/ajcn.113.079590

      55 55. Yu ZB, Han SP, Zhu GZ, et al. Birth weight and subsequent risk of obesity: a systematic review and meta‐analysis. Obes Rev 2011; 12(7):525–42. doi:10.1111/j.1467‐789X.2011.00867.x

      56 56. Kramer MS, Zhang X, Dahhou M, et al. Does fetal growth restriction ause later obesity? Pitfalls in analyzing causal mediators as confounders. Am J Epidemiol 2017; 185(7):585–90. doi:10.1093/aje/kww109

      57 57. Taveras EM, Rifas‐Shiman SL, Sherry B, et al. Crossing growth percentiles in infancy and risk of obesity in childhood. Arch Pediatr Adolesc Med 2011; 165(11):993–8. doi:10.1001/archpediatrics.2011.167

      58 58. Gillman MW, Rifas‐Shiman SL, Fernandez‐Barres S, Kleinman K, Taveras EM, Oken E. Beverage intake during pregnancy and childhood adiposity. Pediatrics 2017; 140(2):e20170031. doi:10.1542/peds.2017‐0031

      59 59. Pearlman M, Obert J, Casey L. The association between artificial sweeteners and obesity. Curr Gastroenterol Rep 2017; 19(12):64. doi:10.1007/s11894‐017‐0602‐9

      60 60. deKoning L, Anand SS. Adherence to a Mediterranean diet and survival in a Greek population. Trichopoulou A, Costacou T, Bamia C, Trichopoulos D. N Engl J Med 2003; 348: 2599‐608. Vasc Med 2004;9(2):145–6. doi:10.1191/1358863x04vm552xx

      61 61. Shivappa N, Steck SE, Hurley TG, Hussey JR, Hébert JR. Designing and developing a literature‐derived, population‐based dietary inflammatory index. Public Health Nutr 2014; 17(8):1689–96. doi:10.1017/S1368980013002115

      62 62. Sen S, Rifas‐Shiman SL, Shivappa N, et al. Dietary inflammatory potential during pregnancy Is associated with lower fetal growth and breastfeeding failure: results from Project Viva. J Nutr 2016; 146(4):728–36. doi:10.3945/jn.115.225581

      63 63. Sen S, Rifas‐Shiman SL, Shivappa N, et al. Associations of prenatal and early life dietary inflammatory potential with childhood adiposity and cardiometabolic risk in Project Viva. Pediatr Obes 2018; 13(5):292–300. doi:10.1111/ijpo.12221

      64 64. Oken E, Levitan E, Gillman M. Maternal smoking during pregnancy and child overweight. Int J Obes 2008; 32(2):201–10. doi:10.1038/sj.ijo.0803760

      65 65. Albers L, Sobotzki C, Kuß O, et al. Maternal smoking during pregnancy and offspring overweight: is there a dose–response relationship? An individual patient data meta‐analysis. Int J Obes 2018; 42(7):1249–64. doi:10.1038/s41366‐018‐0050‐0

      66 66. Fleisch AF, Rifas‐Shiman SL, Koutrakis P, et al. Prenatal exposure to traffic pollution: associations with reduced fetal growth and rapid infant weight gain. Epidemiology 2015; 26(1):43–50. doi:10.1097/EDE.0000000000000203

      67 67. Gao Y‐J, Holloway AC, Zeng Z, et al. Prenatal exposure to nicotine causes postnatal obesity and altered perivascular adipose tissue function. Obes Res 2005; 13(4):687–92. doi:10.1038/oby.2005.77

      68 68. Holloway AC, Lim GE, Petrik JJ, Foster WG, Morrison KM, Gerstein HC. Fetal and neonatal exposure to nicotine in Wistar rats results in increased beta cell apoptosis at birth and postnatal endocrine and metabolic changes associated with type 2 diabetes. Diabetologia 2005; 48(12):2661–6. doi:10.1007/s00125‐005‐0022‐5

      69 69. Gao Y‐J, Holloway AC, Su L‐Y, Takemori K, Lu C, Lee RMKW. Effects of fetal and neonatal exposure to nicotine on blood pressure and perivascular adipose tissue function in adult life. Eur J Pharmacol 2008; 590(1–3):264–8. doi:10.1016/j.ejphar.2008.05.044

      70 70. Holloway AC, Cuu DQ, Morrison KM, Gerstein HC, Tarnopolsky MA. Transgenerational effects of fetal and neonatal exposure to nicotine. Endocrine 2007; 31(3):254–9. doi:10.1007/s12020‐007‐0043‐6

      71 71. Braun JM. Early‐life exposure to EDCs: role in childhood obesity and neurodevelopment. Nat Rev Endocrinol 2017; 13(3):161–73. doi:10.1038/nrendo.2016.186

      72 72. Johnson PI, Sutton P, Atchley DS, et al. The Navigation Guide—evidence‐based medicine meets environmental health: systematic review of human evidence for PFOA effects on fetal growth. Environ Health Perspect 2014; 122(10):1028–39. doi:10.1289/ehp.1307893

      73 73. Koustas E, Lam J, Sutton P, et al. The Navigation Guide—evidence‐based medicine meets environmental health: systematic review of nonhuman evidence for PFOA effects on fetal growth. Environ Health Perspect 2014; 122(10):1015–27. doi:10.1289/ehp.1307177

      74 74. Cardenas A, Hauser R, Gold DR, et al. Association of perfluoroalkyl and polyfluoroalkyl substances with adiposity. JAMA Netw Open 2018; 1(4):e181493. doi:10.1001/jamanetworkopen.2018.1493

      75 75. Domazet SL, Grøntved A, Timmermann AG, Nielsen F, Jensen TK. Longitudinal associations of exposure to perfluoroalkylated substances in childhood and adolescence and indicators of adiposity and glucose metabolism 6 and 12 years later: the European Youth Heart Study. Diabetes Care 2016; 39(10):1745–51. doi:10.2337/dc16‐0269

      76 76. Halldorsson TI, Rytter D, Haug LS, et al. Prenatal exposure to perfluorooctanoate and risk of overweight at 20 years of age: a prospective cohort study. Environ Health Perspect 2012; 120(5):668–73. doi:10.1289/ehp.1104034

      77 77. Braun JM, Chen A, Romano ME, et al. Prenatal perfluoroalkyl substance exposure and child adiposity at 8 years of age: the HOME study. Obesity 2016; 24(1):231–7. doi:10.1002/oby.21258

      78 78. Mora AM, Oken E, Rifas‐Shiman SL, et al. Prenatal exposure to perfluoroalkyl substances and adiposity in early and mid‐childhood. Environ Health Perspect 2017; 125(3):467–73. doi:10.1289/EHP246

      79 79. Høyer BB, Ramlau‐Hansen CH, Vrijheid M, et al. Anthropometry in 5‐ to 9‐year‐old greenlandic and ukrainian children in relation to prenatal exposure to perfluorinated alkyl substances. Environ Health Perspect 2015; 123(8):841–6. doi:10.1289/ehp.1408881

      80 80. Andersen CS, Fei C, Gamborg M, Nohr EA, Sørensen TIA, Olsen J. Prenatal exposures to perfluorinated chemicals and anthropometry at 7 years of age. Am J Epidemiol 2013; 178(6):921–7. doi:10.1093/aje/kwt057

      81 81. Rifas‐Shiman SL, Rich‐Edwards JW, Scanlon KS, Kleinman KP, Gillman MW. Misdiagnosis of overweight and underweight children younger than 2 years of age due to length measurement bias. MedGenMed 2005; 7(4):56.

      82 82. Perng W, Hajj H, Belfort MB, et al. Birth size, early life weight gain, and midchildhood cardiometabolic health. J Pediatr 2016;173:122–30.e1. doi:10.1016/j.jpeds.2016.02.053

      83 83. Perng W, Rifas‐Shiman SL, Kramer MS, et al. Early weight gain, linear growth, and mid‐childhood blood pressure: a prospective study in Project Viva. Hypertension 2016; 67(2):301–8. doi:10.1161/HYPERTENSIONAHA.115.06635

      84 84.