Группа авторов

Genome Editing in Drug Discovery


Скачать книгу

P., Coons, M.M., Klompe, S.E. et al. (2019). Harnessing Type I CRISPR‐Cas systems for genome engineering in human cells. Nat. Biotechnol. 37: 1471–1477.

      21 Carte, J., Wang, R., Li, H. et al. (2008). Cas6 is an endoribonuclease that generates guide RNAs for invader defense in prokaryotes. Genes Dev. 22: 3489–3496.

      22 Carte, J., Pfister, N.T., Compton, M.M. et al. (2010). Binding and cleavage of CRISPR RNA by Cas6. RNA 16: 2181–2188.

      23 Chatterjee, P., Jakimo, N., and Jacobson, J.M. (2018). Minimal PAM specificity of a highly similar SpCas9 ortholog. Sci. Adv. 4: eaau0766.

      24 Chatterjee, P., Lee, J., Nip, L. et al. (2020). A Cas9 with PAM recognition for adenine dinucleotides. Nat. Commun. 11: 2474.

      25 Chavez, A., Tuttle, M., Pruitt, B.W. et al. (2016). Comparison of Cas9 activators in multiple species. Nat. Methods 13: 563–567.

      26 Chen, S.P. and Wang, H.H. (2019). An engineered Cas‐transposon system for programmable and site‐directed DNA transpositions. CRISPR J 2: 376–394.

      27 Chen, J.S., Dagdas, Y.S., Kleinstiver, B.P. et al. (2017). Enhanced proofreading governs CRISPR‐Cas9 targeting accuracy. Nature 550: 407–410.

      28 Chen, J.S., Ma, E., Harrington, L.B. et al. (2018). CRISPR‐Cas12a target binding unleashes indiscriminate single‐stranded DNase activity. Science 360: 436–439.

      29 Chen, P., Zhou, J., Wan, Y. et al. (2020). A Cas12a ortholog with stringent PAM recognition followed by low off‐target editing rates for genome editing. Genome Biol. 21: 78.

      30 Clarke, R., Heler, R., Macdougall, M.S. et al. (2018). Enhanced bacterial Immunity and mammalian genome editing via RNA‐polymerase‐mediated dislodging of Cas9 from double‐strand DNA breaks. Mol. Cell 71: 42–55. e8.

      31 Coelho, M.A., De Braekeleer, E., Firth, M. et al. (2020). CRISPR GUARD protects off‐target sites from Cas9 nuclease activity using short guide RNAs. Nat. Commun. 11: 4132.

      32 Collias, D. and Beisel, C.L. (2021). CRISPR technologies and the search for the PAM‐free nuclease. Nat. Commun. 12: 555.

      33 Cong, L., Ran, F.A., Cox, D. et al. (2013). Multiplex genome engineering using CRISPR/Cas systems. Science 339: 819–823.

      34 Cox, D.B.T., Gootenberg, J.S., Abudayyeh, O.O. et al. (2017). RNA editing with CRISPR‐Cas13. Science 358: 1019–1027.

      35 Datsenko, K.A., Pougach, K., Tikhonov, A. et al. (2012). Molecular memory of prior infections activates the CRISPR/Cas adaptive bacterial immunity system. Nat. Commun. 3: 945.

      36 Davidson, A.R., Lu, W.T., Stanley, S.Y. et al. (2020). Anti‐CRISPRs: protein inhibitors of CRISPR‐Cas systems. Annu. Rev. Biochem. 89: 309–332.

      37 Deltcheva, E., Chylinski, K., Sharma, C.M. et al. (2011). CRISPR RNA maturation by trans‐encoded small RNA and host factor RNase III. Nature 471: 602–607.

      38 Deng, L., Garrett, R.A., Shah, S.A. et al. (2013). A novel interference mechanism by a Type IIIB CRISPR‐Cmr module in Sulfolobus. Mol. Microbiol. 87: 1088–1099.

      39 Deweirdt, P.C., Sanson, K.R., Sangree, A.K. et al. (2021). Optimization of AsCas12a for combinatorial genetic screens in human cells. Nat. Biotechnol. 39: 94–104.

      40 Dicarlo, J.E., Norville, J.E., Mali, P. et al. (2013). Genome engineering in Saccharomyces cerevisiae using CRISPR‐Cas systems. Nucleic Acids Res. 41: 4336–4343.

      41 Ding, Q., Regan, S.N., Xia, Y. et al. (2013). Enhanced efficiency of human pluripotent stem cell genome editing through replacing TALENs with CRISPRs. Cell Stem Cell 12: 393–394.

      42 Doench, J.G., Fusi, N., Sullender, M. et al. (2016). Optimized sgRNA design to maximize activity and minimize off‐target effects of CRISPR‐Cas9. Nat. Biotechnol. 34: 184–191.

      43 Dolan, A.E., Hou, Z., Xiao, Y. et al. (2019). Introducing a spectrum of long‐range genomic deletions in human embryonic stem cells using Type I CRISPR‐Cas. Mol. Cell 74: 936–950. e5.

      44 Dugar, G., Leenay, R.T., Eisenbart, S.K. et al. (2018). CRISPR RNA‐dependent binding and cleavage of endogenous RNAs by the campylobacter jejuni Cas9. Mol. Cell 69: 893–905. e7.

      45 East‐Seletsky, A., O'connell, M.R., Knight, S.C. et al. (2016). Two distinct RNase activities of CRISPR‐C2c2 enable guide‐RNA processing and RNA detection. Nature 538: 270–273.

      46 Edraki, A., Mir, A., Ibraheim, R. et al. (2019). A compact, high‐accuracy Cas9 with a dinucleotide PAM for in vivo genome editing. Mol. Cell 73: 714–726. e4.

      47 Elmore, J.R., Sheppard, N.F., Ramia, N. et al. (2016). Bipartite recognition of target RNAs activates DNA cleavage by the Type III‐B CRISPR‐Cas system. Genes Dev. 30: 447–459.

      48 Estrella, M.A., Kuo, F.T., and Bailey, S. (2016). RNA‐activated DNA cleavage by the Type III‐B CRISPR‐Cas effector complex. Genes Dev. 30: 460–470.

      49 Esvelt, K.M., Mali, P., Braff, J.L. et al. (2013). Orthogonal Cas9 proteins for RNA‐guided gene regulation and editing. Nat. Methods 10: 1116–1121.

      50 Faure, G., Makarova, K.S., and Koonin, E.V. (2019a). CRISPR‐Cas: complex functional networks and multiple roles beyond adaptive immunity. J. Mol. Biol. 431: 3–20.

      51 Faure, G., Shmakov, S.A., Yan, W.X. et al. (2019b). CRISPR–Cas in mobile genetic elements: counter‐defence and beyond. Nat. Rev. Microbiol. 17: 513–525.

      52 Fonfara, I., Richter, H., Bratovič, M. et al. (2016). The CRISPR‐associated DNA‐cleaving enzyme Cpf1 also processes precursor CRISPR RNA. Nature 532: 517–521.

      53 Friedland, A.E., Tzur, Y.B., Esvelt, K.M. et al. (2013). Heritable genome editing in C. elegans via a CRISPR‐Cas9 system. Nat. Methods 10: 741–743.

      54 Garneau, J.E., Dupuis, M.E., Villion, M. et al. (2010). The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature 468: 67–71.

      55 Gasiunas, G., Barrangou, R., Horvath, P., and Siksnys, V. (2012). Cas9‐crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc. Natl. Acad. Sci. U. S. A. 109: E2579–E2586.

      56 Gasiunas, G., Young, J.K., Karvelis, T. et al. (2020). A catalogue of biochemically diverse CRISPR‐Cas9 orthologs. Nat. Commun. 11: 5512.

      57 Gilbert, L.A., Larson, M.H., Morsut, L. et al. (2013). CRISPR‐mediated modular RNA‐guided regulation of transcription in eukaryotes. Cell 154: 442–451.

      58 Gilbert, L.A., Horlbeck, M.A., Adamson, B. et al. (2014). Genome‐scale CRISPR‐mediated control of gene repression and activation. Cell 159: 647–661.

      59 Godde, J.S. and Bickerton, A. (2006). The repetitive DNA elements called CRISPRs and their associated genes: evidence of horizontal transfer among prokaryotes. J. Mol. Evol. 62: 718–729.

      60 Goldberg, G.W., Jiang, W., Bikard, D., and Marraffini, L.A. (2014). Conditional tolerance of temperate phages via transcription‐dependent CRISPR‐Cas targeting. Nature 514: 633–637.

      61 Gonzalez‐Delgado, A., Mestre, M.R., Martinez‐Abarca, F., and Toro, N. (2019). Spacer acquisition from RNA mediated by a natural reverse transcriptase‐Cas1 fusion protein associated with a Type III‐D CRISPR‐Cas system in Vibrio vulnificus. Nucleic Acids Res. 47: 10202–10211.

      62 Gootenberg, J.S., Abudayyeh, O.O., Lee, J.W. et al. (2017). Nucleic acid detection with CRISPR‐Cas13a/C2c2. Science 356: 438–442.

      63 Gootenberg, J.S., Abudayyeh, O.O., Kellner, M.J. et al. (2018). Multiplexed and portable nucleic acid detection platform with Cas13, Cas12a, and Csm6. Science 360: 439–444.

      64 Grieger, J.C. and Samulski, R.J. (2005). Packaging capacity of adeno‐associated virus serotypes: impact of larger genomes on infectivity and postentry steps. J. Virol. 79: 9933–9944.

      65 Grissa, I., Vergnaud, G., and Pourcel, C. (2007). The CRISPRdb database and tools to display CRISPRs and to generate dictionaries of spacers and repeats. BMC Bioinform. 8: 172.

      66 Hale, C., Kleppe, K., Terns, R.M.,