Umashankar Subramaniam

Smart Grids and Micro-Grids


Скачать книгу

      Where

      (1.12)

      (1.13)

       1.2.2 Effect of Irradiance and Temperature

      The ILG and Isc are directly proportional to solar irradiance and temperature which can be expressed as below [15],

      (1.14)

      (1.15)

      where, Gstc and G are the standard and actual irradiance in W/m2. Similarly, the open-circuit voltage is also varying as function of irradiance which can be expressed as,

      (1.16)

      The Voc equation is a non-linear transcendental equation and also need to be solved using numerical methods for determining the parameters under dynamic condition. The procedure for obtaining this value using GS or NR technique is similar as that of five parameter estimation of SDM of SPV. For a given operating temperature, the Isc and Voc can be evaluated using the following expressions:

      (1.17)

      (1.18)

      Where Tstc and T denotes the standard and actual operating cell temperature in K. On the other hand, the light generated current as a function of temperature can be determined using (1.4) and is rewritten as,

      (1.19)

      (1.21)image

      The thermal voltage (Vt) as function of cell temperature can be represented as,

      The diode dark current also called reverse saturation current as a function of cell operating temperature and irradiance can be represented using (1.6) and (1.23) as,

      (1.24)image

       1.2.3 Estimation of Maximum Power Point

      For accurate evaluation of maximum power point of SPV panel, the initial values of Vmpp and Impp should be selected properly using the known values of Voc and Isc under STC. The variation of parameters like Vt(GT), Rse(GT), and Rsh(GT) with respect to operating temperature and irradiance can be deduced using equations shown below [15],

      (1.25)image

      (1.27)image

      To determine the voltage at MPP, (1.6) has been modified as a function of irradiance and temperature as represented below,

      Where,

image

      Also, the current at MPP can be deduced by rearranging (1.7) as a function of irradiance and temperature as,

      Where,

image

      Equation (1.28) and (1.29) are transcendental equation and the solution can be obtained through numerical techniques.

       1.3.1 Gauss-Seidel Technique

      The GS is an iterative technique for solving the non-linear transcendental equations. The generalized form of equation to be solved using GS can be represented as [15, 20]:

      (1.30)image

      Where ‘x’ is the variable to be determined and ‘k’ denotes the number of iterations, xk+1 is the new value obtained and xk represents the old value. The algorithm converges if the absolute error of new and old values is less than the tolerance of 10-6. In this work, the GS method is employed to determine the unknown parameters by solving the equations of (1.10), (1.11), and (1.13) to get the values of Vt, Rse, and Rsh with the input values of Vmpp, Impp, Voc,