Геннадий Степанов

Искусственный ложный Разум и Мир


Скачать книгу

определил, что утверждения субъективной математики представляют собой совокупность математических истин, познаваемых человеком с математической определенностью с помощью доказательства. Такая субъективная математика непротиворечива и полна. Но она не представляет особого интереса, поскольку не может дать нетривиальный результат.

      Человеческий мозг разум и мышление способен вырабатывать гипотезы, которые невозможно доказать в формальной системе исчислений с математической определенностью. Он постигает математические истины с математической определенностью совсем иным образом (возможно случайным образом, содержательным (трансцендентальным) по Канту), чем с помощью полных и непротиворечивых теорий.

      Неполнота формальных систем исчислений является платой за возможность того, что дедуктивные системы приближаются к тому способу, которым человеческий мозг разум и мышление получает математическое знание за счёт индукции. Таким образом, аксиоматическая система, все истины которой представляют собой аксиомы, не является полной формальной системой, в которой могут быть выражены все математические истины.

      Никакая формальная система математики не может быть одновременно непротиворечивой и полной, или, любая непротиворечивая формальная теория математики должна содержать неразрешимые предложения.

      Таким образом, аксиоматический базис субъективной математики, состоящий из чисто математических истин, познаваемых человеческим мозгом разумом и мышлением с математической определенностью без математического доказательства вместе с правилами вывода не может быть представлен формальной логической системой.

      Можно предположить, что такой базис может быть представлен на основе новой содержательной (трансцендентальной) логике по Канту.

      Гёдель полагал, что его теоремы о неполноте проливают свет на соотношение мозга и ума, что и находит отражение в его дилемме между человеческим мозгом разумом и мышлением и машинным искусственным разумом.

      Если очевидные аксиомы порождаются мозгом и в этом отношении вполне допустимым становится вопрос о том, является ли человеческий мозг разум и мышление эквивалентным машинному искусственному разуму.

      Если это так, то тогда можно говорить о правиле порождения априорных по Канту (возможно случайным образом) очевидных аксиом (гипотез).

      Если это множество порожденных аксиом не является рекурсивно перечислимым, то тогда способность ума к математической определенности превосходит аналогичную возможность современных машин, поскольку действие последних ограничено рекурсивными процедурами.

      Отсюда следует вывод, что перспективный машинный искусственный разум, основанной на содержательной (трансцендентальной) логики согласно Канту, может иметь возможность вырабатывать априорные аксиомы (гипотезы), возможно случайным