R. W. and Schrefler, B. A. (1998). The Finite Element Method in the Static and Dynamic Deformation and Consolidation of Porous Media, John Wiley & Sons, Chichester.
15 Markert, B, Heider, Y. and Ehlers, W. (2010) Comparison of monolithic and splitting solution schemes for dynamic porous media problems, Int. J. Num. Meth. Eng., 82, 1341–1383.
16 Matthies, H. and Strang, G. (1979) The solution of nonlinear finite element equations, Int. J. Num. Meth. Eng., 14, 1613–1626.
17 Murthy, V., Valliappan, S. and Khalili‐Naghadeh, N. (1989). Time step constraints in finite element analysis of poisson type equation, Comput. Struct., 31, 269–271.
18 Newmark, N. M. (1959). A method of computation for structural dynamics, Proc. ASCE, 8, 67–94.
19 Park, K. C. (1983). Stabilization of partitioned solution procedure for pore fluid‐soil interaction analysis, Int. J. Num. Meth. Eng., 19, 1669–1673.
20 Park, K. C. and Felippa, C. A. (1983). ‘Partitioned analysis of coupled systems’, Chapter 3, in Computational Methods for Transient Analysis, T. Belytschko and Thomas J R Hughes (Eds), Elsevier Science Publishers B. V.
21 Rank, E., Katz, C. and Werner, H. (1983). On the importance of the discrete maximum principle in transient analysis using finite element method, Int. J. Num. Meth. Eng., 19, 1771–1782.
22 Turska, E., Schrefler, B. A. (1993). On convergence conditions of partitioned solution procedures for consolidation problems, Comp. Meth. Appl. Mech. Eng., 106, 51–64.
23 Wood, W. L. (1984a). A further look at Newmark, Houbolt, etc., time‐stepping formulae, Int. J. Num. Meth. Eng., 20, 1009–1017.
24 Wood, W. L. (1984b). A unified set of single step algorithms Part 2: Theory, Int. J. Num. Meth. Eng., 20, 2303–2309.
25 Wood, W. L. (1985a). Addendum to ‘a unified set of single step algorithms, Part 2: Theory’, Int. J. Num. Meth. Eng., 21, 1165.
26 Wood, W. L. (1985b). A unified set of single‐step algorithms Part 4: Backward error analysis applied to the solution of the dynamic vibration equation—Numerical Analysis. Report 6/85, Department of Mathematics, University of Reading, Reading.
27 Wood, W. L. (1990). Practical Time‐Stepping Schemes, Clarendon Press, Oxford.
28 Zienkiewicz, O. C. (1984). Coupled problems and their numerical solution, Chapter 1. in Numerical Methods in Coupled Systems, R. L. Lewis, P. Bettess and E. Hinton (Eds), John Wiley and Sons Ltd., Chichester.
29 Zienkiewicz, O. C. (1985). The coupled problems of soil‐pore fluid‐external fluid interaction: Basis for a general geomechanics code, ICONMIG 5, 1731–1740.
30 Zienkiewicz, O. C. and Shiomi, T. (1984). Dynamic behaviour of saturated porous media: the generalized Biot formulation and its numerical solution, Int. J. Num. Anal. Geomech., 8, 71–96.
31 Zienkiewicz, O. C. and Taylor, R. L. (1985). Coupled problems – a simple time‐stepping procedure, Comm. Appl. Num. Meth., 1, 233–239.
32 Zienkiewicz, O. C. and Xie, Y. M. (1991). A Simple error estimator for adaptative time stepping procedure in dynamic analysis, Int. J. Earth. Struct. Dyn., 20, 871–887.
33 Zienkiewicz, O. C., Hinton, E., Leung, K. H., and Taylor, R. L. (1980a). Innovative numerical analysis for the applied engineering sciences. Proceedings of the Second International Symposium on Innovative Numerical Analysis in Applied Engineering Sciences. https://www.amazon.com/Innovative‐Numerical‐Analysis‐Engineering‐Sciences/dp/0813908671
34 Zienkiewicz, O. C., Wood, W. L. and Taylor, R. L. (1980b). An alternative single‐step algorithm for dynamic problems, Earthq. Eng. Struct. Dyn., 8, 31–40.
35 Zienkiewicz, O. C., Leung, K. H., Hinton, E. and Chang, C. T. (1982). Liquefaction and permanent deformation under dynamic conditions – numerical solution and constitutive relations, Chapter 5, in Soil Mechanics – Transient and Cyclic loads, G. N. Pande and O. C. Ziekiewicz (Eds), John Wiley, Chichester.
36 Zienkiewicz, O. C., Wood, W. L., Hine, N. W. and Taylor, R. L. (1984). A unified set of single step algorithms Part 1: General formulation and applications, Int. J. Num. Meth. Eng., 20, 1529–1552.
37 Zienkiewicz, O. C., Taylor, R. L., Simo, J. C. and Chan, A. H. C. (1986a). The patch test – a condition for assessing FEM. convergence, Int. J. Num. Meth. Eng., 22, 39–62.
38 Zienkiewicz, O. C., Qu, S., Taylor, R. L. and Nakazawa, S. (1986b). The patch test for mixed formulation, Int. J. Num. Meth. Eng., 23, 1873–1883.
39 Zienkiewicz, O. C., Paul, D. K. and Chan, A. H. C. (1988). Unconditionally stable staggered solution procedure for soil pore fluid interaction problems, Int. J. Num. Meth. Eng., 26, 5, 1039–1055.
40 Zienkiewicz, O. C., Chan, A. H. C., Pastor, M., Paul, D. K. and Shiomi, T. (1990a). Static and dynamic behaviour of geomaterials: a rational approach to quantitative solutions, Part I: Fully saturated problems, Proc. Roy. Soc. Lond., A429, 285–309.
41 Zienkiewicz, O. C., Xie, Y. M., Schrefler, B. A., Ledesma, A. and Bicanic, N. (1990b). Static and dynamic behaviour of soils: a rational approach to quantitative solutions, Part II: Semi‐ saturated problems, Proc. Roy. Soc. Lond., A429, 310–323.
42 Zienkiewicz, O. C., Taylor, R. L., Zhu, J. Z. (2013). The Finite Element Method: Its Basis and Fundamentals 7. Butterworth‐Heinemann.
Конец ознакомительного фрагмента.
Текст предоставлен ООО «ЛитРес».
Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес.
Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.