S. Kar, A. S. Mujumdar, and P. P. Sutar, “Aspergillus niger inactivation in microwave rotary drum drying of whole garlic bulbs and effect on quality of dried garlic powder,” Dry. Technol., vol. 37, no. 12, 2019, doi: 10.1080/07373937.2018.1517777.
67. P. Piyasena, C. Dussault, T. Koutchma, H. S. Ramaswamy, and G. B. Awuah, “Radio Frequency Heating of Foods: Principles, Applications and Related Properties - A Review,” Critical Reviews in Food Science and Nutrition, vol. 43, no. 6. 2003, doi: 10.1080/10408690390251129.
68. F. Salazar, S. Garcia, M. Lagunas-Solar, Z. Pan, and J. Cullor, “Effect of a heat-spray and heat-double spray process using radiofrequency technology and ethanol on inoculated nuts,” J. Food Eng., vol. 227, 2018, doi: 10.1016/j. jfoodeng.2017.12.017.
69. F. Marra, L. Zhang, and J. G. Lyng, “Radio frequency treatment of foods: Review of recent advances,” Journal of Food Engineering, vol. 91, no. 4. 2009, doi: 10.1016/j.jfoodeng.2008.10.015.
70. S. Ozturk et al., “Inactivation of Salmonella Enteritidis and Enterococcus faecium NRRL B-2354 in corn flour by radio frequency heating with subsequent freezing,” LWT, vol. 111, 2019, doi: 10.1016/j.lwt.2019.04.090.
71. S. Liu et al., “Microbial validation of radio frequency pasteurization of wheat flour by inoculated pack studies,” J. Food Eng., vol. 217, 2018, doi: 10.1016/j. jfoodeng.2017.08.013.
72. S. Hu, Y. Zhao, Z. Hayouka, D. Wang, and S. Jiao, “Inactivation kinetics for Salmonella typhimurium in red pepper powders treated by radio frequency heating,” Food Control, vol. 85, 2018, doi: 10.1016/j.foodcont.2017.10.034.
73. S. G. Jeong and D. H. Kang, “Influence of moisture content on inactivation of Escherichia coli O157:H7 and Salmonella enterica serovar Typhimurium in powdered red and black pepper spices by radio-frequency heating,” Int. J. Food Microbiol., vol. 176, 2014, doi: 10.1016/j.ijfoodmicro.2014.01.011.
74. Y. Zhao, W. Zhao, R. Yang, J. Singh Sidhu, and F. Kong, “Radio frequency heating to inactivate microorganisms in broccoli powder,” Food Qual. Saf., vol. 1, no. 1, 2017, doi: 10.1093/fqs/fyx005.
75. M. Mazen Hamoud-Agha and K. Allaf, “Instant Controlled Pressure Drop (DIC) Technology in Food Preservation: Fundamental and Industrial Applications,” in Food Preservation and Waste Exploitation, 2020.
76. T. Allaf, C. Besombes, I. Mih, L. Lefevre, and K. Allaf, “Decontamination of Solid and Powder Foodstuffs using DIC Technology,” in Advances in Computer Science and Engineering, 2011.
77. S. Mounir, C. Besombes, N. Al-Bitar, and K. Allaf, “Study of instant controlled pressure drop DIC treatment in manufacturing snack and expanded granule powder of Apple and Onion,” Dry. Technol., vol. 29, no. 3, 2011, doi: 10.1080/07373937.2010.491585.
78. A. Demirdöven and T. Baysal, “Optimization of ohmic heating applications for pectin methylesterase inactivation in orange juice,” J. Food Sci. Technol., vol. 51, no. 9, 2014, doi: 10.1007/s13197-012-0700-5.
79. W. Il Cho, J. Y. Yi, and M. S. Chung, “Pasteurization of fermented red pepper paste by ohmic heating,” Innov. Food Sci. Emerg. Technol., vol. 34, 2016, doi: 10.1016/j.ifset.2016.01.015.
80. M. Kumar, Jyoti, and A. Hausain, “Effect of ohmic heating of buffalo milk on microbial quality and tesure of paneer,” Asian J. Dairy. Foods Res., vol. 33, no. 1, 2014, doi: 10.5958/j.0976-0563.33.1.003.
81. J. H. Ryang et al., “Inactivation of Bacillus cereus spores in a tsuyu sauce using continuous ohmic heating with five sequential elbow-type electrodes,” J. Appl. Microbiol., vol. 120, no. 1, 2016, doi: 10.1111/jam.12982.
82. S. H. Park, V. M. Balasubramaniam, S. K. Sastry, and J. Lee, “Pressure-ohmicthermal sterilization: A feasible approach for the inactivation of Bacillus amyloliquefaciens and Geobacillus stearothermophilus spores,” Innov. Food Sci. Emerg. Technol., vol. 19, 2013, doi: 10.1016/j.ifset.2013.03.005.
83. R. Somavat, H. M. H. Mohamed, Y. K. Chung, A. E. Yousef, and S. K. Sastry, “Accelerated inactivation of Geobacillus stearothermophilus spores by ohmic heating,” J. Food Eng., vol. 108, no. 1, 2012, doi: 10.1016/j. jfoodeng.2011.07.028.
84. X. Tian, Q. Yu, W. Wu, and R. Dai, “Inactivation of microorganisms in foods by ohmic heating: A review,” J. Food Prot., vol. 81, no. 7, pp. 1093–1107, 2018, doi: 10.4315/0362-028X.JFP-17-343.
85. R. Pereira, J. Martins, C. Mateus, J. Teixeira, and A. Vicente, “Death kinetics of Escherichia coli in goat milk and Bacillus licheniformis in cloudberry jam treated by ohmic heating,” Chem. Pap., vol. 61, no. 2, 2007, doi: 10.2478/ s11696-007-0008-5.
86. S. Leizerson and E. Shimoni, “Effect of ultrahigh-temperature continuous ohmic heating treatment on fresh orange juice,” J. Agric. Food Chem., vol. 53, no. 9, 2005, doi: 10.1021/jf0481204.
87. I. K. Park, J. W. Ha, and D. H. Kang, “Investigation of optimum ohmic heating conditions for inactivation of Escherichia coli O157:H7, Salmonella enterica serovar Typhimurium, and Listeria monocytogenes in apple juice,” BMC Microbiol., vol. 17, no. 1, 2017, doi: 10.1186/s12866-017-1029-z.
88. M. Zell, J. G. Lyng, D. A. Cronin, and D. J. Morgan, “Ohmic cooking of whole beef muscle - Evaluation of the impact of a novel rapid ohmic cooking method on product quality,” Meat Sci., vol. 86, no. 2, 2010, doi: 10.1016/j. meatsci.2010.04.007.
89. M. Morales-de la Peña, L. Salvia-Trujillo, M. A. Rojas-Graü, and O. Martín-Belloso, “Impact of high intensity pulsed electric field on antioxidant properties and quality parameters of a fruit juice-soymilk beverage in chilled storage,” LWT - Food Sci. Technol., vol. 43, no. 6, 2010, doi: 10.1016/j. lwt.2010.01.015.
90. P. Nath, S. J. Kale, and B. Bhushan, “Consumer Acceptance and Future Trends of Non-thermal-Processed Foods,” in Non-thermal Processing of Foods, 2019.
91. A. A. Oduola, R. Bowie, S. A. Wilson, Z. Mohammadi Shad, and G. G. Atungulu, “Impacts of broadband and selected infrared wavelength treatments on inactivation of microbes on rough rice,” J. Food Saf., vol. 40, no. 2, 2020, doi: 10.1111/jfs.12764.
92. C. Venkitasamy et al., “Feasibility of using sequential infrared and hot air for almond drying and inactivation of Enterococcus faecium NRRL B-2354,” LWT, vol. 95, 2018, doi: 10.1016/j.lwt.2018.04.095.
93. Y. Feng, B. Wu, X. Yu, A. E. G. A. Yagoub, F. Sarpong, and C. Zhou, “Effect of catalytic infrared dry-blanching on the processing and quality characteristics of garlic slices,” Food Chem., vol. 266, 2018, doi: 10.1016/j. foodchem.2018.06.012.
94. A. Kapoor and P. P. Sutar, “Finish drying and surface sterilization of bay leaves by microwaves,” 2019, doi: 10.4995/ids2018.2018.7822.
95. H. Patil, N. G. Shah, S. N. Hajare, S. Gautam, and G. Kumar, “Combination of microwave and gamma irradiation for reduction of aflatoxin B1 and microbiological contamination in peanuts (Arachis hypogaea L.),” World Mycotoxin J., vol. 12, no. 3, 2019, doi: 10.3920/WMJ2018.2384.
96. X. Cao et al., “Radiofrequency heating for powder pasteurization of barley grass: antioxidant substances, sensory quality, microbial load and energy consumption,” J. Sci. Food Agric., vol. 99, no. 9, 2019, doi: 10.1002/jsfa.9683.
97. L. Zhang, J. G. Lyng, R. Xu, S. Zhang, X. Zhou, and S. Wang, “Influence of radio frequency treatment on in-shell walnut quality and Staphylococcus aureus ATCC 25923 survival,” Food Control, vol. 102, 2019, doi: 10.1016/j. foodcont.2019.03.030.
98. J. Peng et al., “Freezing as pretreatment in instant controlled pressure drop (DIC) texturing of dried carrot chips: Impact of freezing temperature,” LWT - Food Sci. Technol., vol. 89, 2018, doi: 10.1016/j.lwt.2017.11.009.
99. E. J. Rifna,