and organic sulphur in organic‐rich sediments from the Peru Margin. Geochimica et Cosmochimica Acta 55: 3581–3595.
62 Nielsen, H. (1965). Schwefelisotope im marinen Kreislauf und das δ34S der früheren Meere. Geologische Rundschau 55: 160–172.
63 Papineau, D., Mojzsis, S.J. and Schmitt, A.K. (2007). Multiple sulfur isotopes from Paleoproterozoic Huronian interglacial sediments and the rise of atmospheric oxygen. Earth and Planetary Science Letters 255: 188–212.
64 Paris, G., Sessions, A.L., Subhas, A.V. et al. (2013). MC‐ICP‐MS measurement of δ34S and Δ33S in small amounts of dissolved sulfate. Chemical Geology 345: 50–61
65 Paytan, A., Kastner, M., Campbell, D. and Thiemens, M.H. (2004). Seawater sulfur isotope fluctuations in the Cretaceous. Science 304: 1663–1665.
66 Pavlov, A.A. and Kasting, J.F. (2002). Mass‐independent fractionation of sulfur isotopes in Archean sediments: Strong evidence for an anoxic Archean atmosphere. Astrobiology 2, 27–41.
67 Peketi, A., Mazumdar, A., Joshi, R. et al. (2012). Tracing the paleo sulfate‐methane transition zones and H2S seepage events in marine sediments: an application of C‐S‐Mo systematics. Geochemistry Geophysics Geosystems 13: Q10007. http://dx.doi.org/10.1029/2012GC004288.
68 Pellerin, A., Antler, G., Holm, S.A. et al. (2019). Large sulfur isotope fractionation by bacterial sulfide oxidation. Science Advances 5: 1480–1486.
69 Philippot, P., Ávila, J.N., Killingsworth, B.A. et al. (2018). Globally asynchronous sulphur isotope signals require re‐definition of the Great Oxidation Event. Nature Communications 9: 2245–2255.
70 Present, T.M., Paris, G., Burke, A. et al. (2015). Large carbonate associated sulfate isotopic variability between brachiopods, micrite and other sedimentary components in Late Ordovician strata. Earth and Planetary Science Letters 432: 187–198.
71 Present, T.M., Bergmann, K.D., Myers, C. et al. (2018). Pyrite‐walled tube structures in a Mesoproterozoic sediment‐hosted metal sulfide deposit. Geological Society of America Bulletin 130: 598–616.
72 Present, T.M., Gutierrez, M., Paris, G. et al. (2019). Diagenetic controls on the isotopic composition of carbonate‐associated sulphate in the Permian Capitan Reef Complex, West Texas. Sedimentology 66: 2605–2626.
73 Raab, M. and Spiro, B. (1991). Sulfur isotopic variations during seawater evaporation with fractional crystallization. Chemical Geology Isotope Geoscience 86: 323–333.
74 Rees, C.E., Jenkins, W.J. and Monster, J. (1978). The sulphur isotopic composition of ocean water sulphate. Geochimica et Cosmochimica Acta 42: 377–381.
75 Reinhard, C.T., Planavsky, N.J. and Lyons, T.W. (2013). Long‐term sedimentary recycling of rare sulphur isotope anomalies. Nature 497: 100–103.
76 Reuschel, M., Strauss, H., Lepland, A. et al. (2013). The end of mass‐independent fractionation of sulphur isotopes. In: Reading the Archive of Earth’s Oxygenation. Volume 3: Global Events and the Fennoscandian Arctic Russia – Drilling Early Earth Project, Chapter 7.1 (eds V.A., Melezhik, A.R. Prave, A.E. Fallick et al.), 1049–1058. Dordrecht: Springer.
77 Rickard, D. and Luther III, G.W. (2007). Chemistry of iron sulfides. Chemical Reviews 107: 514–562.
78 Schidlowksi, M., Hayes, J.M. and Kaplan, I.R. (1983). Isotopic inferences of ancient biochemistries: carbon, sulfur, hydrogen and nitrogen. In: Earth’s Earliest Biosphere – Its Origin and Evolution (ed. J.W. Schopf), 149–186. Princeton, NJ: Princeton UniversityPress.
79 Schobben, M., Stebbins, A., Ghaderi, A. et al. (2015). Flourishing ocean drives the end‐Permian marine mass‐extinction. Proceedings of the National Academy of Sciences of the United States of America 112: 10298–10303.
80 Schobben, M., Stebbins, A., Algeo, T.J. et al. (2017). Volatile Early Triassic sulfur cycle: a consequence of persistent low seawater sulfate concentrations and a high sulfur cycle turnover rate? Palaeogeography, Palaeoclimatology, Palaeoecology 486: 74–85.
81 Shawar, L., Halevy, I., Said‐Ahmad, W. et al. (2018). Dynamics of pyrite formation and organic matter sulfurization in organic‐rich carbonate sediments. Geochimica et Cosmochimica Acta 241: 219–239.
82 Shawar, L., Said‐Ahmad, W., Ellis, G.S. and Amrani, A. (2020). Sulfur isotope composition of individual compounds in immature organic‐rich rocks and possible geochemical implications. Geochimica et Cosmochimica Acta 274: 20–44.
83 Shen, Y., Buick, R. and Canfield, D.E. (2001). Isotopic evidence for microbial sulphate reduction in the early Archaean era. Nature 410: 77–81.
84 Siedenberg, K., Strauss, H., Podlaha, O.G. et al. (2018). Multiple sulfur isotopes (δ34S, Δ33S) of organic sulfur and pyrite from Late Cretaceous to Early Eocene oil shales in Jordan. Organic Geochemistry 125: 29–40.
85 Sim, M.S., Bosak, T. and Ono, S. (2011). Large sulfur isotope fractionation does not require disproportionation. Science 333: 74–77.
86 Sinnighe‐Damsté, J.S., Rijpstra, W.I.C., Kock‐van‐Dalen, A. et al. (1989). Quenching of labile functionalized lipids by inorganic sulphur species: evidence for the formation of sedimentary organic sulphur compounds at the early stages of diagenesis. Geochimica et Cosmochimica Acta 53: 1343–1355.
87 Staudt, W.J. and Schoonen, M.A.A. (1995). Sulfate incorporation into sedimentary carbonates. In: Geochemical Transformations of Sedimentary Sulfur (eds. M.A. Vairavamurthy and M.A.A. Schoonen), 332–345. Washington DC: American Chemical Society.
88 Strauss, H. (1997). The isotopic composition of sedimentary sulfur through time. Palaeogeography, Palaeoclimatology, Palaeoecology 132: 97–118.
89 Strauss, H. (1999). Geological evolution from isotope proxy signals: sulfur. Chemical Geology 161: 89–101.
90 Strauss, H. (2004). 4 Ga of seawater evolution: evidence from the sulfur isotopic composition of sulfate. In: Sulfur Biogeochemistry: Past and Present. Special Paper 379 (eds. J.P. Amend, K.J. Edwards and T.W. Lyons), 195–205. Geological Society of America.
91 Szabo, A., Tudge, A., Macnamara J. et al. (1950). The distribution of S34 in nature and the sulfur cycle. Science 111: 464–465.
92 Thiemens, M.H. and Heidenreich, J.E. (1983). The mass‐independent fractionation of oxygen – a novel isotope effect and its possible cosmochemical implications. Science 219: 1073–1075.
93 Thode, H.G., MacNamara, J. and Collins, C.B. (1949). Natural variations in the isotopic content of sulphur and their significance. Canadian Journal of Research B 27: 361–73.
94 Thode, H.G., Macnamara, J. and Fleming, W.H. (1953). Sulfur isotope fractionation in nature and geological and biological time scales. Geochimica et Cosmochimica Acta 3: 235–243.
95 Tostevin, R., Turchyn, A.V., Farquhar et al. (2014). Multiple sulfur isotope constraints on the modern sulfur cycle. Earth and Planetary Sciences Letters 396: 14–21.
96 Urban, N.R., Ernst, K. and Bernasconi, S. (1999). Addition of sulfur to organic matter during early diagenesis of lake sediments. Geochimica et Cosmochimica Acta 63: 837–853.
97 Werne, J.P., Hollander, D.J., Lyons, T.W. et al. (2004). Organic sulfur biogeochemistry: recent advances and future research directions. In: Sulfur Biogeochemistry: Past and Present. Special Paper 379 (eds. J.P. Amend K.J. Edwards and T.W. Lyons), 135–149. Geological Society of America.
98 Werne, J.P., Lyons, T.W., Hollander, D.J. et al. (2008). Investigating pathways of diagenetic organic matter sulfurization using compound‐specific sulfur isotope analysis. Geochimica et Cosmochimica Acta 72: 3489–3502.
99 Wing, B.A. and Halevy, I. (2014). Intracellular metabolite levels shape sulfur isotope fractionation during microbial sulfate reduction. Proceedings of the National Academy of Sciences 111: 18116–18125.
100 Wotte, T., Shields‐Zhou, G.A. and Strauss, H. (2012). Carbonate‐associated sulfate: Experimental comparisons of common extraction methods and recommendations toward a standard analytical protocol. Chemical