reduction by Geobacter sulfurreducens. Journal of Bacteriology 200 (19): e00347–18. doi:10.1128/JB.00347–18
101 Otte, S., Kuenen, J.G., Nielsen, L.P. et al. (1999). Nitrogen, carbon and sulfur metabolism in natural Thioploca samples. Environmental Microbiology 65 (7): 3148–3157.
102 Otte, J.M., Harter, J., Laufer, K. et al. (2018) The distribution of active iron‐cycling bacteria in marine and freshwater sediments is decoupled from geochemical gradients. Environmental Microbiology 20: 2483–2499. https://doi.org/10.1111/1462–2920.14260
103 Otwell, A.E., Callister, S.J., Zink, E.M. et al. (2016). Comparative proteomic analysis of Desulfotomaculum reducens MI‐1: insights into the metabolic versatility of a gram‐positive sulfate and metal‐reducing bacterium. Frontiers in Microbiology 7: 191. https://doi.org/10.3389/fmicb.2016.00191
104 Park, H.S., Kim, B.H., Kim, H.S. et al. (2001). A novel electrochemically active and Fe(III)‐reducing bacterium phylogenetically related to Clostridium butyricum isolated from a microbial fuel cell. Anaerobe 7(6): 297–306. https://doi.org/10.1006/anae.2001.0399
105 Parkhurst, D.L. and Appelo, C.A.J. (2013). Description of input and examples for PHREEQC version 3 – a computer program for speciation, batch‐reaction, one‐dimensional transport and inverse geochemical calculations. US Geological Survey, Techniques and Methods, book 6, A43, 497 p. Available at: https://pubs.usgs.gov/tm/06/a43/
106 Pfeffer, C., Larsen, S., Song, J.et al. (2012). Filamentous bacteria transport electrons over centimeter distances. Proceedings of the National Academy of Sciences 491 (7423): 218–221. doi:10.1038/nature11586
107 Picard, A., Testemale, D., Wagenknecht, L. et al. (2015). Iron reduction by the deep‐sea bacterium Shewanella profunda LT13a under subsurface pressure and temperature conditions. Frontiers in Microbiology 5: 796. https://doi.org/10.3389/fmicb.2014.00796
108 Picard, A., Gartman, A. and Girguis, P.R. (2016). What do we really know about the role of microorganisms in iron sulfide mineral formation? Frontiers in Earth Sciences 4: 68. https://doi.org/10.3389/feart.2016.00068.
109 Pirbadian, S., Barchinger, S.E., Leung, K.M.et al. (2014). Shewanella oneidensis MR‐1 nanowires are outer membrane and periplasmic extensions of the extacellular electron transport components. Proceedings of the National Academy of Sciences 111 (35): 12883–12888. https://doi.org/10.1073/pnas.1410551111
110 Pley, U., Schipka, J., Gambacorta, A. et al. (1991). Pyrodictium abyssi sp. nov. represents a novel heterotrophic marine archaeal hyperthermophile growing at 110°C. Systematic and Applied Microbiology 14 (3): 245–253. https://doi.org/10.1016/S0723–2020(11)80376–0
111 Powell, S.M., Bowman, J.P., Snape, I. et al. (2003). Microbial community variation in pristine and polluted nearshore Antarctic sediments. FEMS Microbiology Ecology 45 (2): 135–45. https://doi.org/10.1016/S0168–6496(03)00135–1
112 Ramette, A. (2007). Multivariate analyses in microbial ecology. FEMS Microbiology Ecology 62 (2): 142–160. https://doi.org/10.1111/j.1574–6941.2007.00375.x
113 Reguera, G. (2018). Biological electron transport goes the extra mile. Proceedings of the National Academy of Sciences 115 (22): 5632–5634. https://doi.org/10.1073/pnas.1806580115
114 Reguera, G., McCarthy, K.D., Mehta, T. et al. (2005). Extracellular electron transfer via microbial nanowires. Nature 435 (7045): 1098–1101. doi:10.1038/nature03661
115 Reyes, C., Qian, F., Zhan, A. et al. (2012). Characterization of axial and proximal histidine mutations of the decaheme cytochrome MtrA from Shewanella sp. str. ANA‐3 and implications for the electron transport system. Journal of Bacteriology 194 (21): 5840–5847. doi:10.1128/JB.00890–12
116 Reyes, C., Dellwig, O., Dähnke, K. et al. (2016). Bacterial communities potentially involved in iron‐cycling in Baltic Sea and North Sea sediments revealed by pyrosequencing. FEMS Microbiology Ecology 92 (14): fiw054. https://doi:10.1093/femsec/fiw054.
117 Reyes, C., Schneider, D., Thürmer, A. et al. (2017). Potentially active iron, sulfur and sulfate reducing bacteria in Skagerrak and Bothnian Bay sediments. Geomicrobiology Journal 34(10): 840–850. https://doi.org/10.1080/01490451.2017.1281360
118 Rickard, D. and LutherIII, G.W. (2007). Chemistry of iron sulfides. Chemical Reviews 107 (2): 514–562. https://doi.org/10.1021/cr0503658
119 Riedinger, N., Brunner, B., Krastel, S. et al. (2017). Sulfur cycling in an iron oxide‐dominated, dynamic marine depositional system: the Argentine Continental Margin. Frontiers in Earth Science 5. https://doi:10.3389/feart.2017.00033.
120 Risgaard‐Petersen, N., Revil, A., Meister, P. et al. (2012). Sulphur, iron and calcium cycling associated with natural electric currents in marine sediment. Geochimica et Cosmochimica Acta. 92: 1–13. https://doi.org/10.1016/j.gca.2012.05.036
121 Roden, E.E. and Lovley, D.R. 1993. Dissimilatory Fe(III) reduction by the marine microorganism, Desulfuromonas acetoxidans. Applied Environmental Microbiology 59 (3): 734–742.
122 Saha, R., Saha, N., Donofrio, R.S. et al. (2012). Microbial siderophores: a minireview. Journal of Basic Microbiology 53 (4): 303–317. https://doi.org/10.1002/jobm.201100552
123 Saltikov, C.W., Cifuentes, A., Venkateswaran, K. et al. (2003). The ars detoxification system is advantageous but not required for As(V) respiration by the genetically tractable Shewanella species strain ANA‐3. Applied and Environmental Microbiology 69(5): 2800–2809. doi:10.1128/AEM.69.5.2800–2809.2003
124 Sanjana, T.K., Ghangrekar, M.M. and Mitra, A. (2016). In situ bioremediation using sediment microbial fuel cell. Journal of Hazardous, Toxic and Radioactive Waste 21 (2): 04016022. doi:10.1061/(asce)hz.2153‐5515.0000339
125 Santos, T.C., Silva, M.A., Morgado, L. et al. (2015). Diving into the redox properties of Geobacter sulfurreducens cytochromes: a model for extracellular electron transfer. Dalton Transactions 44 (20): 9335–9344. doi:10.1039/c5dt00556f
126 Satomi, M. 2014. The family Shewanellaceae. In: The Prokaryotes (eds. E. Rosenberg, E.F. DeLong, S. Lory et al.), 597–625. Berlin, Heidelberg: Springer. https://doi.org/10.1007/978‐3‐642‐38922‐1_226
127 Schauer, R., Petersen, N.R., Kjeldsen, K.U. et al. (2014). Succession of cable bacteria and electric currents in marine sediments. ISME Journal 8 (6): 1314–1322. https://doi.org/10.1038/ismej.2013.239
128 Scheller, S., Yu, H., Chadwick, G.L., McGlynn, S.E., Orphan, V.J. (2016). Artificial electron acceptors decouple archaeal methane oxidation from sulfate reduction. Science351: 6274 703–707.
129 Schulz, H.D. and Zabel, M. ed. (2006). Marine Geochemistry, 2e. Berlin: Springer.
130 Shi, L., Squier, C., Zachara, J.M. et al. (2007). Respiration of metal (hydr)oxides by Shewnaella and Geobacter: a key role for multihaem c‐type cytochromes. Molecular Microbiology 65 (1): 12–20. https://doi.org/10.1111/j.1365–2958.2007.05783.x
131 Shi,