Питер Ф. Боер

Практические примеры оценки стоимости технологий


Скачать книгу

F. Peter. Real Options Solution: Finding Total Value in a High-Risk World. New York: John Wiley & Sons, 2002.

      2

      При переводе на русский язык сокращенного варианта словосочетания «Research and Development» – R&D – мы использовали аббревиатуру НИОКР, хотя понятия, которые выражают эти два сокращения, не совсем совпадают. Однако мы решили не изобретать новых слов и воспользоваться близкой по значению и, главное, привычной и понятной российскому читателю аббревиатурой, вложив в нее более широкий смысл – обязательное доведение исследований до практической разработки, которая приносит более высокую прибыль (или иную выгоду), чем существующие технологии. – Г. М.

      3

      См. сноску 2. – Здесь и далее, если не указано особо, – примеч. редактора.

      4

      Греческой буквой «бета» (β) обозначают чувствительность ценных бумаг (в данном случае – акций) к рыночным изменениям.

      5

      Гаранты размещения ценных бумаг.

      6

      Высокодоходные, но ненадежные ценные бумаги. – Примеч. переводчика.

      7

      В книге часто используются специальные термины, имеющие хождение среди профессиональных оценщиков. Они даются в редакции переводчика.

      8

      В таблице 5.2. и 6.1 автор почему-то изменил порядок нумерации методов расчета продленной стоимости и называет метод расчета по коэффициенту Р/Е методом № 4, а следующий (по EBITDA) – методом № 3.

      9

      Другими словами, соотношение цены исполнения опциона и рыночной цены базовых активов делает исполнение опциона невыгодным.

iVBORw0KGgoAAAANSUhEUgAAAj8AAAHECAYAAADWEUtwAAAACXBIWXMAAAsTAAALEwEAmpwYAAAgAElEQVR42u2dT04rO9OHDRKZkfkBiTEZZMQOImUBrIGNhIUwZ8YeWMXVEUs4QxbwnXxvlyjq2K5ydwNJ/DxSdO+hu/2vqu1fu92ulAAAAAAAAAAAAAAAAABOmvO/v5u/v7vKb/X3t2hM9/Lv7/7vb/f39/L39+fvb3MibXap2uUnrs9xUbHfEjcHAAD4PBDvxcl75ff77++qIb1dJo3nExmEL1T99nU6++brS6wLtjsl0QkAAHBw4kcP7K/pfzM/pzLzsJ8dezBt1SJepl4fET9W6GwRPwAAAG2zEla0nA+D7P6cp+G/e4Ejr8Su//7++/t7HAb7eyWAFhnRtSv8Nio9+duVKuODyrt0nv7bKlj+GtuUn82Kipep188pfi6GYyLEnkwbbU272L/Vrk8ZO+nfvbH/piDId0HRVitLqQwRu5f8c1Upo+QnaefOyf3N+uW9ediIpHOjrpc0liPKej/8XdLZGB/1bH9ZaOtlpn0fTHkXDfWN1CmpfqjF9jVfq/l0Ct4bnm8BwAGJn/PCAP4+iJ2FGoCfCgO97tD34uStkp4M6PLqZjWU4SEjHux59tpNsPytM2VjxMvU62viKiJ+pA31zJz8e6Pa7j9jB92O3vW6nq+qc39Tdb42eSTjG6VjqaEudrD60yB6xT9fzfWbQhm1b8q9k6tH6bo/w99koP5thHwtneuhrZ+VeHkbjp01lPVN3Q93plxnQdvn2u3N9CeXprz36t+LYLu11EmX5SWNfwXv+XT03vB8CwAOSPxcms5Rz2ZIR701wuRu+Ju+7sx0ACJYrjPpW1FjBVOL+ImU/xTEz8oRP7mB5dIMPiIUfw82fFECMXK9/ttj5py5xE+0LFrARZ+urysCsHT8zQz0YwbxXB28dNaDqLsy93GpHKWyvpl2uzBCbGxZtxkx95Tx1Vo+Xrvl6vRg8rXtMlb8tPh0zh893wKAAxI/+pw79YSaEz/6Rr4w5y0DwqYkfnYp/9ooIn4i5T9W8XOemS0YMxuUGyisL0SvjwwU9un3viIaorNdubJMET+bgPiRtnp0REdu4NuaWR89E/LbpKNnSh4KA60+NrWsVlRH2jtX1pfC7OqluhdfnDQeKuKnVCcRVJtvEj9Rf/R8CwAOSPzIKwQ98/JmxENOhOjpaN0BtIofXa7dCPETKf+xih/dCS+D4mfldND2NcKi8XrbwUfEjwyAt43ixyvLV4uf7VCvXyPFj3wg8JT5lV7f7My9omdUnoay3mdmJFrKan0o0t66rLosj+nfNT2yJmaXmWHy6hup09xfnno+PfbeQPwAHLD4yc2k2NdG+lXWppDmwrk2J370V2e/RoqfSPnnEC96ofey8Xrv2hJrNcB4MyPrwtPpLjMz99/wd2+KPne9HQgirwjWatCOiJ9oWcaIH5t2Sfw8qYHMe91Um/nZZPxoVWkr+3HBSvlSaTamtazWjpH2rtlV33c5oT3mtVetTtbvps78eD7dcm/9QfwAHIf40a+0ZEHkixEPerZAFv09KEH0qGZgXowg8sTPH9PBlcTPk3lS1E+XXvmnih9d/9JAW7o+cm3OXndqxkQWWcrvQbWnDI6lNQh2gaxM7+v1P6vg9XqQWQTFz7kaXKLiJ1KWMeIn97SeEz92LdsY8VNbLxVd8xMRE5Gyvik752YUo76TW/NjF8zbmZCXEeLHq5PNKyd+tunzeimvb6z5dKR9Ir7VUi4A+GLxk5tCfirM9Dykfzfak2nvSyM6SoOJFT/SodTET+33GCz/MYmf2hdztc/qZbCRVxPa3naRayoMlKXrI2V6LpwnfhJd8+PVJY0QP9o+WkCVxI/XTm9OO2jh/6p88jnFv/ayr5Fe0uevtKJl1TMpTxkxFGnvUp0fzTn6U3B5rS31vm0QP7U62a8WS+LI84uoTy+c9on6VrRcAPBN6FAY3hOJDpmR2+NjTMiMKWLusbH8x0BEJOgO/ywzazQ2zEbperueITejMvdu31Pr8hP3kW0HW4cxa8H0PXc1wZd0+JXFF7W3vhd/chNUuT9WgbbZjLQlAMCPdGyn+j59ivj5KuTp9jvFzzE+RDx8o03m8qVTRBZLL/BpAIDjEXfe0+U5T6AQFK271N+i24sDEqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP8I7P378+PHjx4/fAf++RPwAAAAAHOokDeIHAAAAED+IHwAAAED8IH4AAAAA8TMu0fO/v5u/vzv1W2APAGjg8u9vNfz/xRH1I1LWfdnPMsdvVL3s368wO8Dxip99p/WS/l19/fr3t8EuABBgPfQZe6GwHf7/6gjK/Kb6vGdV5r0oevj7exp+j0ocXQ9/W2F2gOMXP4/mqWY3dAZLbAMADueDmHg6EmGg+72zTD+4Vv3ftRJzF0Pf+IjJAU5P/JwPTz2/hxt+Pdzwr0PHthk6jPPhKe9JHVupdHfmiSmpDnKjnqJ2qtO8Tx/T5ZLGffqYnXqsCLLI+ZLf21C/R5Xfuarrk/otzRPfkynvLvP3/e92OLYx7foUqMPGtFfNDt51pTxseR9naMPLQp3tk3PO5rVrLyrtnGvLUhlb06m11ZnTFrocMpt675RhZ9KQGYj7QFlKPtpyr+Xa/tLx48sRfn4I4uc/VWYraraD+NHCaKX+zkMhwAmKnws187MeOgnptPc3/5+hI5Cp7s2QjggmeVp6UwJKp/uuOlXJ+9eQni6LpCHT0dfD8efKgFc7X+e3VMdl8FgPddvX9W6oqy6/Pf42XCtrpqTNZA3Btelg15k2ydVBrrlW7Vuyw8a5rpbHY/pY5yXtNLUNrwuDynPmCdvavHbteaWdFxWftmVsScdrK68t9PGFsuGmUIY789CRs2upLGeOj0butVLbe348xs8PYabqQQnSnbln9GyP/P+tEpMXCCCA0xA/r+qJ8E0NrDfmCVF3dLLI8Uw9LWnx89+Qru1gpUO24uI8I6D+M4P42gz6JeGQO3+b6ZD13x6MsFpnxI/824rGc3X9WaGtXob2jYgf2xnX7FC7LgXaqTbQtbahJ35qNr91ri21s8UrYzQdr628fHJ5rgc7ej5jZyCWgbat+WjrvVbyiZwfj/HzQxA/W9XvSR+4yogjEUgPqi1fVd92xvgFcLzi53m4weVnO+xd+lgcqMWHdBLvakbnzAzG0nlLR74bztPX6Z/tVFeOwLHHSuc/ZGaN1mYmSwae+8xT+HaC+HkoDEKl2av39O+ryJodSteNFT9j29CbvanZ/DZ9XoCqF6JGxc95oIxziR8vn4dUf0WSK4NO/1f6/ComIn5KPhq510pt7/nxGD//aWptmZsBlDVAt2pGSL8OA4AjFT+PladomUlYVMTHeaFDXA3pyxqSjerQI0LA5hURP6Xz9cyUrt8fM7vzpga3nPhZNoqfneowo3W2MzieHb5y5qelDWtpJ6f+kcG9ZeanZue5xE8tn1w5ZAbvrFIG/eoqZ+OI+Fk6Mz9jfKLkx2P8/KeJzA7aPnKTPi+Eljbiq1iAExM/55kOXq81yb0msusT5An4NfM0uzYdrh4M9AD/mD4vsPYGz9L560oHv8zMGuhXCOfmyTAqft7MDE3LIKQFT80OtevGDnRj29AboGs2n0v8eGWcS/x4+ZSOPzpl0Gvj9EyE1z41H43eayWfqPnxGD8/lJkfvT4rN/NjF+xfM/MD0MfMj3Rs8m78dThfXlPo9UJvmUFwZToaPQDIwPpf+njv/lt1JnrdkHwJ8ycwqJfOP1eiYZfJzw4QIn5+qXM3hXariR/dobaIH70u4b5ih6vKdauR4mdsG5Zen+iBvGTzucSPV8a5xI+XT+74c3D2aZv+fYVZK8ul46PRe60mfkp+PMbPfxppD+2rufvFfjWp7y1Z88OmsABHKH4iRHZBvZvQ0ZXS1x1yJI/o+ZfpOHez9uww5xPx3G1oPxH+jrp8l529fG5GlENefV0doQ+lDu6pC0QPwOmLn5+itr5njvPh+9pwzVNyeFDdzwa9pPLiWwAAxM8Jix95D7/6ovOBNjw05LXK/jUn+8gAAOKnQ/EDAAAAiB/EDwAAACB+ED8AAACA+EH8AAAAAOIHAAAAAPHz/+i9StgDBHpGR35fVO6VyB48so/MMpBXbi8g73qItf+qYMva8ZuU/+rxJh3u5o0AiJ+GRO1Op7IbLzc49IjsjJzbTVyHnngMpOXtmyR52d2wJTwJe1eNZ236td+mHUvHZa+lp+GnI7dfD39jKwiAIxc/OvSEjiH0FuzcAU5V/NjYWvremFv8PJqZhV36iCKO+GnHxu4qxaDLHV+b8ySWl43NBgBHLH72na/dUM12yOv0EbH5aeiIdYfxlPndDsfu1UDyaPLJpRtJs/Q0Xhtg9HEbrLBWRy8tG/unlM5loV42sKIt4/6cX5U2WTplv85cE20nXbfr4djb8ISsxfKlGhRsdHLJz6t/pO1K9qu13TJwvCRIXtO/ISYkrpN9OCiVXQ+yO1XnZUX86IDCt871kXa7U+11qe7LnTr/xqS/aLwvDnHWJ2c7HaC3dFzHW9PBS22IFgA4YvGjO9w71SnKtLsE+7wfRIaOJq7XK8hTk7w/18EOZfB8Sf9GvLbprpw0c0/BkeCskUjjuTrW0rpOn6On19LRg6Cs7XhRZbBlXCuhcVVpE6/s0snfD9e8BdtJ102371LZUke61mXVbSyi16t/pO1K9vPazjtem43RflX6u1d2CUgrvq1DV+R898LM/EhZ71Vejw0+J4Fx7819eZc+AqjKOfr6lvvi0LEzP7XjazXbI/fBrXlAQwABnIj40YOVTPdLZ32fPr8SswKkFNHcnrdWnaeXbjTNOcRPpI42rZ0RPslJp2UAl/