diameter distribution. Journal of Non‐Newtonian Fluid Mechanics 165 (15–16): 892–900.
56 Thenmozhi, S., Dharmaraj, N., Kadirvelu, K., and Kim, H.Y. (2017). Electrospun nanofibers: new generation materials for advanced applications. Materials Science Engineering B 217: 36–48.
57 Tian, L., Yan, T., and Pan, Z. (2015). Fabrication of continuous electrospun nanofiber yarns with direct 3D processability by plying and twisting. Journal of Materials Science 50 (21): 7137–7148.
58 Tsai, P.P. (2005). Strength, surface energy, and ageing of meltblown and electrospun nylon and polyurethane (PU) fabrics treated by a one atmosphere uniform glow discharge plasma (OAUGDP™). Textile Research Journal 75 (12): 819–825.
59 Vazquez, B., Vasquez, H., and Lozano, K. (2012). Preparation and characterization of polyvinylidene fluoride nanofibrous membranes by forcespinning™. Polymer Engineering and Science 52 (10): 2260–2265.
60 Vitchuli, N., Shi, Q., Nowak, J. et al. (2010). Electrospun ultrathin nylon fibers for protective applications. Journal of Applied Polymer Science 116 (4): 2181–2187.
61 Wakamatsu, Y., Matsumoto, H., Minagawa, M., and Tanioka, A. (2006). Effect of ion‐exchange nanofiber fabrics on water splitting in bipolar membrane. Journal of Colloid and Interface Science 300 (1): 442–445.
62 Wang, Q., Bai, Y., Xie, J. et al. (2016). Synthesis and filtration properties of polyimide nanofiber membrane/carbon woven fabric sandwiched hot gas filters for removal of PM2.5 particles. Powder Technology 292: 54–63.
63 Wang, Z., Espín, L., Bates, F.S. et al. (2016). Water droplet spreading and imbibition on superhydrophilic poly(butylene terephthalate) melt‐blown fiber mats. Chemical Engineering Science 146: 104–114.
64 Weitz, R.T., Harnau, L., Rauschenbach, S. et al. (2008). Polymer nanofibers via nozzle‐free centrifugal spinning. Nano Letters 8 (4): 1187–1191.
65 Wijesena, R.N., Tissera, N., Perera, R., and de Silva, K.N. (2014). Side selective surface modification of chitin nanofibers on anionically modified cotton fabrics. Carbohydrate Polymers 109: 56–63.
66 Wong, P., Ho, Y., and Chan, C. (2007). Internationalization and evolution of application areas of an emerging technology: the case of nanotechnology. Scientometrics 70: 715–737.
67 Xia, L., Xi, P., and Cheng, B. (2015). A comparative study of UHMWPE fibers prepared by flash‐spinning and gel‐spinning. Materials Letters 147: 79–81.
68 Xiao, H., Song, Y., and Chen, G. (2014). Correlation between charge decay and solvent effect for melt‐blown polypropylene electret filter fabrics. Journal of Electrostatics 72 (4): 311–314.
69 Yan, T., Tian, L., and Pan, Z. (2016). Structures and mechanical properties of plied and twisted polyacrylonitrile nanofiber yarns fabricated by a multi‐needle electrospinning device. Fibers and Polymers 17 (10): 1627–1633.
70 Yanilmaz, M., Lu, Y., Zhu, J., and Zhang, X. (2016). Silica/polyacrylonitrile hybrid nanofiber membrane separators via sol‐gel and electrospinning techniques for lithium‐ion batteries. Journal of Power Sources 313: 205–212.
71 Yokoyama, Y., Hattori, S., Yoshikawa, C. et al. (2009). Novel wet electrospinning system for fabrication of spongiform nanofiber 3‐dimensional fabric. Materials Letters 63 (9–10): 754–756.
72 Zhang, X. and Lu, Y. (2014). Centrifugal spinning: an alternative approach to fabricate nanofibers at high speed and low cost. Polymer Reviews 54 (4): 677–701.
73 Zhang, Q., Welch, J., Park, H. et al. (2010). Improvement in nanofiber filtration by multiple thin layers of nanofiber mats. Journal of Aerosol Science 41 (2): 230–236.
74 Zhang, H., Niu, Q., Wang, N. et al. (2015). Thermo‐sensitive drug controlled release PLA core/PNIPAM shell fibers fabricated using a combination of electrospinning and UV photo‐polymerization. European Polymer Journal 71: 440–450.
75 Zhao, F., Chen, S., Hu, Q. et al. (2017). Antimicrobial three dimensional woven filters containing silver nanoparticle doped nanofibers in a membrane bioreactor for wastewater treatment. Separation and Purification Technology 175: 130–139.
76 Zhou, F. and Gong, R. (2008). Manufacturing technologies of polymeric nanofibres and nanofibre yarns. Polymer International 57: 837–845.
77 Zhou, W., Reddy, N., and Yang, Y. (2005). Overview of protective clothing. In: Textiles for Protection, 3–30. CRC, Taylor & Francis.
78 Zhu, J., Chen, C., Lu, Y. et al. (2015). Nitrogen‐doped carbon nanofibers derived from polyacrylonitrile for use as anode material in sodium‐ion batteries. Carbon 94: 189–195.
79 Zhu, J., Lu, Y., Chen, C. et al. (2016). Porous one‐dimensional carbon/iron oxide composite for rechargeable lithium‐ion batteries with high and stable capacity. Journal of Alloys and Compounds 672: 79–85.
80 Zhu, J., Yildirim, E., Aly, K. et al. (2016). Hierarchical multi‐component nanofiber separators for lithium polysulfide capture in lithium–sulfur batteries: an experimental and molecular modeling study. Journal of Materials Chemistry A 4: 13572–13581.
81 Zhu, J., Chen, C., Lu, Y. et al. (2016). Highly porous polyacrylonitrile/graphene oxide membrane separator exhibiting excellent anti‐self‐discharge feature for high‐performance lithium–sulfur batteries. Carbon 101: 272–280.
82 Zohoori, S., Karimi, L., and Ayaziyazdi, S. (2014). A novel durable photoactive nylon fabric using electrospun nanofibers containing nanophotocatalysts. Journal of Industrial and Engineering Chemistry 20 (5): 2934–2938.
Конец ознакомительного фрагмента.
Текст предоставлен ООО «ЛитРес».
Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес.
Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.