mesons and protons at several altitudes and L‐latitudes. Physical Review Journals Archive, 79, 749. https://doi.org/10.1103/PhysRev.79.749
15 Delgado‐Granados H, Cárdenas González L, & Piedad Sánchez N. (2001). Sulfur dioxide emissions from Popocatépetl volcano (México): case study of a high‐emission rate, passively degassing erupting volcano. Journal of Volcanological and Geothermic Research, 108, 107–120. https://doi.org/10.1016/S0377‐0273(00) 00280‐8
16 Daya Bay Collaboration (2018). Seasonal variation of the underground cosmic muon flux observed at Daya Bay. Journal of Cosmology and Astroparticle Physics, 2018, 001. https://doi.org/10.1088/1475‐7516/2018/01/001
17 de Mendonca, R. R. S., Braga, C. R., Echer, E., Dal Lago, A., Rockenbach, M., Such, N. J., & Munakata, K. (2016). Deriving the solar activity cycle modulation on cosmic ray intensity observed by Nagoya muon detector from October 1970 until December 2012. Proceedings of the International Astronomical Union, 12, S328, 130–133. https://doi.org/10.1017/S1743921317003763
18 Edmonds, M., Oppenheimer, C., Pyle, D. M., Herd, R. A., & Thompson, G. (2003). SO2 emissions from Soufrière Hills Volcano and their relationship to conduit permeability, hydrothermal interaction and degassing regime. Journal of Volcanological and Geothermic Research, 124, 23–43. https://doi.org/10.1016/ S0377‐0273(03)00041‐6
19 Engel, R., Gaisser, T. K., & Stanev, T. (2001). The flux of atmospheric muons. Proceedings of ICRC 2001, 1029–1032.
20 Gaisser T., & Stanev, T. (2008). Particle astrophysics and high‐energy cosmic rays. Physics Letters B, 667, 254–260.
21 George, E. P. (1955). Cosmic rays measure overburden of tunnel. Commonwealth Engineer, 1955, 455–457.
22 Groom, D. E., Mokhov, N. V., & Striganov, S. I. (2001). Muon stopping‐power and range tables: 10 MeV–100 TeV. Atomic Data and Nuclear Data Tables, 78, 183–356. https://doi.org/10.1006/adnd.2001.0861
23 Haino, S., Sanuki, T., Abe, K., Anraku, K., Asaoka, Y., Fuke, H., et al. (2004). Measurements of primary and atmospheric cosmic‐ray spectra with the BESS‐TeV spectrometer. Physics Letters B, 594(1–2), 35–46. https://doi.org/10.1016/j.physletb.2004.05.019
24 Hansen, P., Gaisser, T. K., Stanev, T., & Sciutto, S. J. (2005). Influence of the geomagnetic field and of the uncertainties in the primary spectrum on the development of the muon flux in the atmosphere. Physical Review D, 71, 083012. https://doi.org/10.1103/PhysRevD.71.083012
25 Hedenquist, J. W., Aoki, M., & Shinohara H. (1994). Flux of volatiles and ore‐forming metals from the magmatic‐hydrothermal system of Satsuma Iwojima volcano. Geology, 22(7), 585–588. https://doi.org/10.1130/0091‐7613(1994)022<0585:FOVAOF>2.3.CO;2
26 Jokisch, H., Carstensen, K., Dau, W., Meyer, H., & Allkofer, O. (1979). Cosmic‐ray muon spectrum up to 1 TeV at 75° zenith angle. Physical Review D, 19(5), 1368–1372. https://doi.org/10.1103/PhysRevD.19.1368
27 Kazahaya, K., Shinohara H., & Saito, G. (2002). Degassing process of Satsuma‐Iwojima volcano, Japan: Supply of volatile components from a deep magma chamber. Earth, Planets and Space, 54, 327–335. https://doi.org/10.1186/BF03353031
28 Kazahaya, K., Shinohara, H., & Saito, G. (1994). Excessive degassing of Izu‐Oshima volcano: magma convection in a conduit. Bulletin of Volcanology, 56, 207–216. https://doi.org/10.1007/BF00279605
29 Kazahaya, R., & Mori, T. (2016). Interpretations for magmatic process and eruptive phenomena by way of volcanic gas studies. Bulletin of the Volcanological Society of Japan, 61, 155–170. https://doi.org/10.18940/kazan.61.1_155
30 Komazawa, M., Nawa, K., Murata, Y., Makino, M., Morijiri, R., Hiroshima, T., et al. (2005). Gravity map of Yaku Shima district (Bouguer anomalies). Gravity map series 22. Geological Survey of Japan, AIST.
31 Koyama, M., & Umino, S. (1991). Why does the Higashi‐Izu monogenetic volcano group exist in the Izu Peninsula?: Relationships between Late Quaternary volcanism and tectonics in the northern tip of the Izu‐Bonin arc. Journal of Physics of the Earth, 39, 391–420. https://doi.org/10.4294/jpe1952.39.391
32 Kusagaya T., & Tanaka H. K. M. (2015a). Development of the very long‐range cosmic ray muon radiographic imaging technique to explore the internal structure of an erupting volcano, Shinmoe‐dake. Japan. Geoscientific Instrumentation, Methods and Data Systems, 4, 215–226. https://doi.org/10.5194/gi‐4‐215‐2015
33 Kussat, N. H., Chadwell, C. D., & Zimmerman, R. (2005). Absolute positioning of an autonomous underwater vehicle using GPS and acoustic measurements. IEEE Journal of Oceanic Engineering, 30, 153–164. https://doi.org/10.1109/JOE.2004.835249
34 Kusagaya, T. (2017). Reduction of the background noise in muographic images for detecting magma dynamics in an active volcano. Ph.D. Thesis, The University of Tokyo, Retrieved from https://repository.dl.itc.u‐tokyo.ac.jp/?action=pages_view_main&active_action=repository_view_main_item:detail&item:id=52347&item:no=1&page_id=28&block_id=31
35 Kusagaya T., & Tanaka H. K. M. (2015b). Muographic imaging with a multi‐layered telescope and its application to the study of the subsurface structure of a volcano. Proceedings of the Japan Academy Series B 91, 501–510. https://doi.org/10.2183/pjab.91.501
36 Matsuno, S., Kajino, F., Kawashima, Y., Kitamura, T., Mitsui, K., Muraki, Y., et al. (1984). Cosmic‐ray muon spectrum up to 20 TeV at 89° zentih angle. Physical Review D, 29, 1–23. https://doi.org/10.1103/PhysRevD.29.1
37 Matsushima, J. (2019). Biogenic gas in Tokyo Bay and Bessi Copper Mine. Muographers 2019 Conference, 09 September 10 September, 24 September – 26, September, Tokyo, Japan,
38 Nagamine, K., Iwasaki, M., Shimomura, K., & Ishida, K. (1995). Method of probing inner‐structure of geophysical substance with the horizontal cosmic‐ray muons and possible application to volcanic eruption prediction. Nuclear Instruments and Methods in Physics Research Section A, 356, 585–595. https://doi.org/10.1016/0168‐9002(94)01169‐9
39 Nawa, K., Fukao, Y., Shichi, R., & Murata, Y. (1997). Inversion of gravity data to determine the terrain density distribution in southwest Japan. Journal of Geophysical Research, 102, 27703–27719. https://doi.org/10.1029/97JB02543
40 Nomura, Y., Nemoto, M., Hayashi, N., Hanaoka, S., Murata, M., Yoshikawa, T., et al. (2020). Pilot study of eruption forecasting with muography using convolutional neural network, Scientific Reports 10, 5272. https://doi.org/10.1038/s41598‐020‐62342‐y
41 Oláh,