12.1 RNN-ridge algorithm.Table 12.2 Interpretation of the confusion matrix.Table 12.3 Confusion matrix for Titanic data sets using RLR...Table 12.4 Number of correct predictions (percentages) and AUROC of LNN-ridge.Table 12.5 Input (xij), output (yi) and predicted values p~(xi) for the image classification problem.Table 12.6 Confusion matrices for RNNs and LNNs (test size = 35).Table 12.7 Accuracy metrics for RNNs vs. LNNs (test size = 35).Table 12.8 Train/test set accuracy for LNNs. F1 score is associated with the test set.Table 12.9 Train/test set accuracy for RNNs. F1 score is associated with the test set.Table 12.10 Confusion matrices for RNNs and LNNs (test size = 700).Table 12.11 Accuracy metrics for RNNs vs. LNNs (test size = 700).Table 12.12 MNIST training with 0 outliers.Table 12.13 MNIST training with 90 outliers.Table 12.14 MNIST training with 180 outliers.Table 12.15 MNIST training with 270 outliers.Table 12.16 Table of responses and probability outputs.
Guide
1 Cover
6 Table of Contents
9 Foreword
10 Preface
12 Bibliography
13 Author Index
Pages
1 i
2 ii
3 iii
4 iv
5 v
6 vi
7 vii
8 viii
9 ix
10 x
11 xi
12 xii
13 xiii
14 xiv
15 xv
16 xvi
17 xvii
18 xviii
19 xix
20 xx
21 xxi
22 xxii
23 xxiii
24 xxiv
25 xxv
26 xxvi
27 xxvii
28 xxviii
29 xxix
30 xxx
31 xxxi
32 1
33 2
34 3
35 4
36 5
37 6
38 7
39 8
40 9
41