Nimbalkar, S., Fuhrer, E., and Silva, P. (2019). Glassy carbon microelectrodes minimize induced voltages, mechanical vibrations, and artifacts in magnetic resonance imaging. Microsystems & Nanoengineering 5: 61. doi: 10.1038/s41378-019-0106-x.
39 39 Jouda, M., Klein, C.O., Korvink, J.G.et al. (2019). Gradient-induced mechanical vibration of neural interfaces during MRI. IEEE Transactions on Bio-medical Engineering 67: 915–923. doi: 10.1109/TBME.2019.2923693.
40 40 Bouilleret, V., Ridoux, V., Depaulis, A.et al. (1999). Recurrent seizures and hippocampal sclerosis following intrahippocampal kainate injection in adult mice: Electroencephalography, histopathology and synaptic reorganization similar to mesial temporal lobe epilepsy. Neuroscience 89 (3): 717–729. doi: https://doi.org/10.1016/S0306-4522(98)00401-1.
41 41 Göbel-Guéniot, K., Gerlach, J., Kamberger, R.et al. (2020). Histological correlates of diffusion-weighted magnetic resonance microscopy in a mouse model of mesial temporal lobe epilepsy. Frontiers in Neuroscience 14: 543.
42 42 Janz, P., Schwaderlapp, N., Heining, K.et al. (2017). Early tissue damage and microstructural reorganization predict disease severity in experimental epilepsy. ELIFE 6: e25742. doi: 10.7554/eLife.25742.
43 43 Olson, D.L., Peck, T.L., Webb, A.G.et al. (1995). High-resolution microcoil 1H-NMR for mass-limited, nanoliter-volume samples. Science 270 (5244): 1967–1970.
44 44 Massin, C., Boero, G., Vincent, F.et al. (2002). High-Q factor RF planar microcoils for micro-scale NMR spectroscopy. Sensors and Actuators A: Physical 97: 280–288. doi: 10.1016/s0924-4247(01)00847-0.
45 45 Montinaro, E., Grisi, M., Letizia, M.C.et al. (2018). 3D printed microchannels for subnL NMR spectroscopy. 13 (5): e0192780. doi: 10.1371/journal.pone.0192780.
46 46 Finch, G., Yilmaz, A., and Utz, M. (2016). An optimised detector for in-situ high-resolution NMR in microfluidic devices. Journal of Magnetic Resonance 262: 73–80. doi: 10.1016/j.jmr.2015.11011.
47 47 Yilmaz, A.and Utz, M. (2016). Characterisation of oxygen permeation into a microfluidic device for cell culture by in situ NMR spectroscopy. Lab on a Chip 16 (11): 2079. doi: 10.1039/c6lc00396f.
48 48 Flint, J.J., Menon, K., Hansen, B.et al. (2015). A microperfusion and in-bore oxygenator system designed for magnetic resonance microscopy studies on living tissue explants. Scientific Reports 5 (1): 18095. doi: 10.1038/srep18095.
49 49 Kalfe, A., Telfah, A., Lambert, J.et al. (2015). Looking into living cell systems: Planar waveguide microfluidic NMR detector for in vitro metabolomics of tumor spheroids. Analytical Chemistry 87 (14): 7402–7410. doi: 10.1021/acs.analchem.5b01603.
50 50 Davoodi, H., Nordin, N., Bordonali, L.et al. (2020). An NMR-compatible microfluidic platform enabling in situ electrochemistry. Lab on a Chip 20 (17): 3202–3212. doi: 10.1039/d0lc00364f.
51 51 Bordonali, L., Nordin, N., Fuhrer, E.et al. (2019). Parahydrogen based NMR hyperpolarisation goes micro: An alveolus for small molecule chemosensing. Lab on a Chip 19: 503–512. doi: 10.1039/C8LC01259H.
52 52 Eills, J., Hale, W., Sharma, M.et al. (2019). High-resolution nuclear magnetic resonance spectroscopy with picomole sensitivity by hyperpolarization on a chip. Journal of the American Chemical Society 141 (25): 9955–9963. doi: 10.1021/jacs.9b03507.
53 53 Lehmkuhl, S., Wiese, M., Schubert, L.et al. (2018). Continuous hyper-polarization with parahydrogen in a membrane reactor. Journal of Magnetic Resonance 291: 8–13. doi: 10.1016/j.jmr.2018.03.012.
54 54 Hiramoto, K., Ino, K., Nashimoto, Y.et al. (2019). Electric and electrochemical microfluidic devices for cell analysis. Frontiers in Chemistry 7 (396): 396. doi: 10.3389/fchem.2019.00396.
55 55 Jayawickrama, D.A.and Sweedler, J.V. (2004). Dual microcoil NMR probe coupled to cyclic CE for continuous separation and analyte isolation. Analytical Chemistry 76 (16): 4894–4900. doi: 10.1021/ac049390o.
56 56 Grass, K., Böhme, U., Scheler, U.et al. (2008). Importance of hydrodynamic shielding for the dynamic behavior of short polyelectrolyte chains. Physical Review Letters 100 (9): 096104. doi: 10.1103/physrevlett.100.096104.
57 57 Diekmann, J., Adams, K.L., Klunder, G.L.et al. (2011). Portable microcoil NMR detection coupled to capillary electrophoresis. Analytical Chemistry 83 (4): 1328–1335. doi: 10.1021/ac102389b.
58 58 Gomes, B., Pollyana, D.S., Lobo, C.et al. (2017). Strong magnetoelectrolysis effect during electrochemical reaction monitored in situ by high-resolution NMR spectroscopy. Analytica Chimica Acta 983: 91–95. doi: 10.1016/j.aca.2017.06.008.
59 59 Sorte, E.G., Jilani, S., and Tong, Y.J. (2017). Methanol and ethanol electrooxidation on PtRu and PtNiCu as studied by high-resolution in situ electrochemical NMR spectroscopy with interdigitated electrodes. Electrocatalysis 8: 95–102. doi: 10.1007/s12678-016-0344-8.
60 60 Zu-Rong, N., Cui, X.-H., Cao, S.-H.et al.(2017). A novel in situ electrochemical NMR cell with a palisade gold film electrode. AIP Advances 7 (8): 085205. doi: 10.1063/1.4997887.
61 61 Da Silva, P., Gomes, B., Lobo, C.et al. (2019). Electrochemical NMR spectroscopy: Electrode construction and magnetic sample stirring. Microchemical Journal 146: 658–663. doi: 10.1016/j.microc.2019.01.010.