Группа авторов

Biomolecules from Natural Sources


Скачать книгу

the properties of starch/chitin/polylactic acid biodegradable composites for biomedical applications. Polymers (Basel) 12 (3).

      12 12 Wissamitanan, T., Dechwayukul, C., Kalkornsurapranee, E., and Thongruang, W. (2020). Proper blends of biodegradable polycaprolactone and natural rubber for 3D printing. Polymers (Basel) 12 (10): 2416.

      13 13 Xu, J., Sagnelli, D., Faisal, M., Perzon, A., Taresco, V., Mais, M., Giosafatto, C.V.L., Hebelstrup, K.H., Ulvskov, P., Jorgensen, B., Chen, L., Howdle, S.M., and Blennow, A. (2021). Amylose/cellulose nanofiber composites for all-natural, fully biodegradable and flexible bioplastics. Carbohydrate Polymers 253: 117277.

      14 14 Zhang, J., Xu, W.R., Zhang, Y.C., Han, X.D., Chen, C., and Chen, A. (2020). In situ generated silica reinforced polyvinyl alcohol/liquefied chitin biodegradable films for food packaging. Carbohydrate Polymers 238: 116182.

      15 15 Bui, A.T., Williams, B.A., Hoedt, E.C., Morrison, M., Mikkelsen, D., and Gidley, M.J. (2020). High amylose wheat starch structures display unique fermentability characteristics, microbial community shifts and enzyme degradation profiles. Food and Function 11 (6): 5635–5646.

      16 16 Maevskaia, E.N., Shabunin, A.S., Dresvyanina, E.N., Dobrovol’skaya, I.P., Yudin, V.E., Paneyah, M.B., Fediuk, A.M., Sushchinskii, P.L., Smirnov, G.P., Zinoviev, E.V., and Morganti, P. (2020). Influence of the introduced chitin nanofibrils on biomedical properties of chitosan-based materials. Nanomaterials (Basel) 10 (5): 945.

      17 17 Dashtban, M., Schraft, H., and Qin, W. (2009). Fungal bioconversion of lignocellulosic residues; opportunities & perspectives. International Journal of Biological Sciences 5 (6): 578–595.

      18 18 Feeney, K.A., Wellner, N., Gilbert, S.M., Halford, N.G., Tatham, A.S., Shewry, P.R., and Belton, P.S. (2003). Molecular structures and interactions of repetitive peptides based on wheat glutenin subunits depend on chain length. Biopolymers 72 (2): 123–131.

      19 19 Fritzsche, K., Lenz, R.W., and Fuller, R.C. (1990). Bacterial polyesters containing branched poly(beta-hydroxyalkanoate) units. International Journal of Biological Macromolecules 12 (2): 92–101.

      20 20 Kim, Y.B., Lenz, R.W., and Fuller, R.C. (1992). Poly(β-hydroxyalkanoate) copolymers containing brominated repeating units produced by Pseudomonas oleovorans. Macromolecules 25 (7): 1852–1857.

      21 21 Pourabedin, M., Xu, Z., Baurhoo, B., Chevaux, E., and Zhao, X. (2014). Effects of mannan oligosaccharide and virginiamycin on the cecal microbial community and intestinal morphology of chickens raised under suboptimal conditions. Canadian Journal of Microbiology 60 (5): 255–266.

      22 22 Japelj, N., Suligoj, T., Zhang, W., Corte-Real, B., Messing, J., and Ciclitira, P.J. (2020). Natural variants of alpha-gliadin peptides with wheat proteins with reduced toxicity in coeliac disease. British Journal of Nutrition 123 (12): 1382–1389.

      23 23 Pei, F., Sun, L., Fang, Y., Yang, W., Ma, G., Ma, N., and Hu, Q. (2020). Behavioral changes in glutenin macropolymer fermented by Lactobacillus plantarum LB-1 to promote the rheological and gas production properties of dough. Journal of Agricultural and Food Chemistry 68 (11): 3585–3593.

      24 24 Sharma, I. and Kango, N. (2021). Production and characterization of keratinase by Ochrobactrum intermedium for feather keratin utilization. International Journal of Biological Macromolecules 166: 1046–1056.

      25 25 Balitaan, J.N.I., Hsiao, C.D., Yeh, J.M., and Santiago, K.S. (2020). Innovation inspired by nature: biocompatible self-healing injectable hydrogels based on modified-beta-chitin for wound healing. International Journal of Biological Macromolecules 162: 723–736.

      26 26 Celik, C., Ildiz, N., Sagiroglu, P., Atalay, M.A., Yazici, C., and Ocsoy, I. (2020). Preparation of nature inspired indicator based agar for detection and identification of MRSA and MRSE. Talanta 219: 121292.

      27 27 Ferreira, L.M., Sari, M.H.M., Azambuja, J.H., da Silveira, E.F., Cervi, V.F., Marchiori, M.C.L., Maria-Engler, S.S., Wink, M.R., Azevedo, J.G., Nogueira, C.W., Braganhol, E., and Cruz, L. (2020). Xanthan gum-based hydrogel containing nanocapsules for cutaneous diphenyl diselenide delivery in melanoma therapy. Investigational New Drugs 38 (3): 662–674.

      28 28 Hassan, M.A., Amara, A.A., Abuelhamd, A.T., and Haroun, B.M. (2010). Leucocytes show improvement growth on PHA polymer surface. Pakistan Journal of Pharmaceutical Sciences 23 (3): 332–336.

      29 29 Hua, D., Gao, S., Zhang, M., Ma, W., and Huang, C. (2020). A novel xanthan gum-based conductive hydrogel with excellent mechanical, biocompatible, and self-healing performances. Carbohydrate Polymers 247: 116743.

      30 30 Khan, M.U.A., Raza, M.A., Razak, S.I.A., Abdul Kadir, M.R., Haider, A., Shah, S.A., Mohd Yusof, A.H., Haider, S., Shakir, I., and Aftab, S. (2020). Novel functional antimicrobial and biocompatible arabinoxylan/guar gum hydrogel for skin wound dressing applications. Journal of Tissue Engineering and Regenerative Medicine 14 (10): 1488–1501.

      31 31 Stark, M., DeBernardis, D., McDowell, C., Ford, E., and McMillan, S. (2020). Percutaneous skeletal fixation of painful subchondral bone marrow edema utilizing an injectable, synthetic, biocompatible hyaluronic acid-based bone graft substitute. Arthroscopy Techniques 9 (11): e1645–e1650.

      32 32 Araujo, D., Alves, V.D., Lima, S.A.C., Reis, S., Freitas, F., and Reis, M.A.M. (2020). Novel hydrogels based on yeast chitin-glucan complex: characterization and safety assessment. International Journal of Biological Macromolecules 156: 1104–1111.

      33 33 Johnson, W., Jr., Bergfeld, W.F., Belsito, D.V., Hill, R.A., Klaassen, C.D., Liebler, D.C., Marks, J.G., Jr., Shank, R.C., Slaga, T.J., Snyder, P.W., Gill, L.J., and Heldreth, B. (2020). Safety assessment of silk protein ingredients as used in cosmetics. International Journal of Toxicology 39 (3_suppl): 127S–144S.

      34 34 Kasai, D. (2020). Poly(cis-1,4-isoprene)-cleavage enzymes from natural rubber-utilizing bacteria. Bioscience, Biotechnology and Biochemistry 84 (6): 1089–1097.

      35 35 Amara, A. (2008). Polyhydroyalkanoates: from basic research and molecular biology to application. IIUM Engineering Journal 9 (1): 37–73.

      36 36 Chaikaew, P., Adeyemi, O., Hamilton, A.O., and Clifford, O. (2020). Spatial characteristics and economic value of threatened species (Khaya ivorensis). Scientific Reports 10 (1): 6266.

      37 37 Amara, A.A. and Moawad, H. (2011). PhaC synthases and PHA depolymerases: the enzymes that produce and degrade plastic. IIUM Engineering Journal 12 (4): 21–37.

      38 38 Frausto de Silva, J.J.R. and Williams, R.J.P. (1993). The Biological Chemistry of the Elements: The Inorganic Chemistry of Life. Oxford: Clarendon Press.

      39 39 Steinbüchel, A. (2001). Perspectives for biotechnological production and utilization of biopolymers: metabolic engineering of polyhydroxyalkanoate biosynthesis pathways as a successful example. Macromolecular Bioscience 1 (1): 1–24.

      40 40 Asayama, S., Nogawa, M., Takei, Y., Akaike, T., and Maruyama, A. (1998). Synthesis of novel polyampholyte comb-type copolymers consisting of a Poly(L-lysine) backbone and hyaluronic acid side chains for a DNA carrier. Bioconjugate Chemistry 9 (4): 476–481.

      41 41 Record, M.T. (1975). Effects of Na+ and Mg++ ions on the helix-coil transition of DNA. Biopolymers 14 (10): 2137–2158.

      42 42 Zheng, J., Zhu, G., Li, Y., Li, C., You, M., Chen, T., Song, E., Yang, R., and Tan, W. (2013). A spherical nucleic acid platform based on self-assembled DNA biopolymer for high-performance cancer therapy. ACS Nano 7 (8): 6545–6554.

      43 43 Rau, I., Grote, J.G., Kajzar, F., and Pawlicka, A. (2012). DNA novel nanomaterial for applications in photonics and in electronics. Comptes Rendus Physique 13 (8): 853–864.

      44 44 Smith, T.J. (1994). Calcium alginate hydrogel as a matrix for enteric delivery of nucleic acids. BioPharm 7 (3): 54–55.

      45 45 Agostinacchio, F., Mu, X., Dire, S., Motta, A., and Kaplan, D.L. (2020). In Situ 3D printing: opportunities with silk inks. Trends in Biotechnology 39 (7): 19–30.

      46 46 Xiao, C.Y., Zhu, Z.L., Zhang, C., Fu, M., Qiao, H.J., Wang, G., and Dang, E.L. (2020). Small interfering RNA targeting of keratin 17 reduces inflammation in imiquimod-induced psoriasis-like dermatitis. Chinese Medical Journal (Engl) 133 (24): 2910–2918.

      47 47