Группа авторов

Biomolecules from Natural Sources


Скачать книгу

activator of the mitochondrial permeability transition pore in cardiac myocytes. Heart 97 (24): e8–e8.

      268 268 Hattenschwilerr, S. and Vitousek, P.M. (2000). The role of polyphenols in terrestrial ecosystem nutrient cycling. Trends in Ecology & Evolution 15 (6): 238–243.

      269 269 Pena-Mendez, E.M., Havel, J., and Patocka, J. (2005). Humic substances – compounds of still unknown structure: applications in agriculture, industry, environment, and biomedicine. Journal of Applied Biomedicine 3 (1): 13–24.

      270 270 Hemingway, R.W. (1998). Practical polyphenolics: from structure to molecular recognition and physiological action (Edited by Haslam E. University of Sheffield). New York, NY: Cambridge University Press. Journal of Natural Products 61 (11): 1454–1455.

      271 271 Serrano, J., Puupponen-Pimiã, R., Dauer, A., Aura, A.-M., and Saura-Calixto, F. (2009). Tannins: current knowledge of food sources, intake, bioavailability and biological effects. Molecular Nutrition & Food Research 53 (S2): S310–S329.

      272 272 Quideau, S.P., Deffieux, D., Douat-Casassus, C.L., and Pouységu, L. (2011). Plant polyphenols: chemical properties, biological activities, and synthesis. Angewandte Chemie International Edition 50 (3): 586–621.

      273 273 Crozier, A., Jaganath, I.B., and Clifford, M.N. (2009). Dietary phenolics: chemistry, bioavailability and effects on health. Natural Product Reports 26 (8): 1001.

      274 274 Schieber, A., Stintzing, F.C., and Carle, R. (2001). By-products of plant food processing as a source of functional compounds—recent developments. Trends in Food Science & Technology 12 (11): 401–413.

      275 275 Gruber, J.V., Lamoureux, B.R., Joshi, N., and Moral, L. (2000). Influence of cationic polysaccharides on polydimethylsiloxane (PDMS) deposition onto keratin surfaces from a surfactant emulsified system. Colloids and Surfaces B: Biointerfaces 19 (2): 127–135.

      276 276 Djilas, S., Canadanovic-Brunet, J., and Cetkovic, G. (2009). By-products of fruits processing as a source of phytochemicals. Chemical Industry and Chemical Engineering Quarterly 15 (4): 191–202.

      277 277 Manach, C., Scalbert, A., Morand, C., Rémésy, C., and Jiménez, L. (2004). Polyphenols: food sources and bioavailability. The American Journal of Clinical Nutrition 79 (5): 727–747.

      278 278 Neveu, V., Perez-Jimenez, J., Vos, F., Crespy, V., du Chaffaut, L., Mennen, L., Knox, C., Eisner, R., Cruz, J., Wishart, D., and Scalbert, A. (2010). Phenol-Explorer: an online comprehensive database on polyphenol contents in foods. Database 2010 (0): bap024–bap024.

      279 279 Collins, A.R. (2005). Assays for oxidative stress and antioxidant status: applications to research into the biological effectiveness of polyphenols. The American Journal of Clinical Nutrition 81 (1): 261S–267S.

      280 280 Manach, C., Williamson, G., Morand, C., Scalbert, A., and Rémésy, C. (2005). Bioavailability and bioefficacy of polyphenols in humans. I. Review of 97 bioavailability studies. The American Journal of Clinical Nutrition 81 (1): 230S–242S.

      281 281 Ramassamy, C. (2006). Emerging role of polyphenolic compounds in the treatment of neurodegenerative diseases: a review of their intracellular targets. European Journal of Pharmacology 545 (1): 51–64.

      282 282 Hooper, L.V., Beranek, M.C., Manzella, S.M., and Baenziger, J.U. (1995). Differential expression of GalNAc-4-sulfotransferase and GalNAc-transferase results in distinct glycoforms of carbonic anhydrase VI in parotid and submaxillary glands. Journal of Biological Chemistry 270 (11): 5985–5993.

      283 283 Jensen, G.S., Wu, X., Patterson, K.M., Barnes, J., Carter, S.G., Scherwitz, L., Beaman, R., Endres, J.R., and Schauss, A.G. (2008). In vitro and in vivo antioxidant and anti-inflammatory capacities of an antioxidant-rich fruit and berry juice blend. Results of a pilot and randomized, double-blinded, placebo-controlled, crossover study. Journal of Agricultural and Food Chemistry 56 (18): 8326–8333.

      284 284 Frankel, E.N., German, J.B., Kinsella, J.E., Parks, E., and Kanner, J. (1993). Inhibition of oxidation of human low-density lipoprotein by phenolic substances in red wine. The Lancet 341 (8843): 454–457.

      285 285 Fuhrman, B., Buch, S., Vaya, J., Belinky, P.A., Coleman, R., Hayek, T., and Aviram, M. (1997). Licorice extract and its major polyphenol glabridin protect low-density lipoprotein against lipid peroxidation: in vitro and ex vivo studies in humans and in atherosclerotic apolipoprotein E-deficient mice. The American Journal of Clinical Nutrition 66 (2): 267–275.

      286 286 Landbo, A.-K. and Meyer, A.S. (2008). Ascorbic acid improves the antioxidant activity of European grape juices by improving the juices’ ability to inhibit lipid peroxidation of human LDL in vitro. International Journal of Food Science & Technology 36 (7): 727–735.

      287 287 Guerrero, J.A., Navarro‐Nuñez, L., Lozano, M.L., Martínez, C., Vicente, V., Gibbins, J.M., and Rivera, J. (2007). Flavonoids inhibit the platelet TxA2signalling pathway and antagonize TxA2receptors (TP) in platelets and smooth muscle cells. British Journal of Clinical Pharmacology 64 (2): 133–144.

      288 288 Nardini, M., Natella, F., and Scaccini, C. (2007). Role of dietary polyphenols in platelet aggregation. A Review of the Supplementation Studies. Platelets 18 (3): 224–243.

      289 289 Spormann, T.M., Albert, F.W., Rath, T., Dietrich, H., Will, F., Stockis, J.P., Eisenbrand, G., and Janzowski, C. (2008). Anthocyanin/polyphenolic-rich fruit juice reduces oxidative cell damage in an intervention study with patients on hemodialysis. Cancer Epidemiology Biomarkers & Prevention 17 (12): 3372–3380.

      290 290 Paiva-Martins, F.t., Fernandes, J.o., Rocha, S., Nascimento, H., Vitorino, R., Amado, F., Borges, F., Belo, L.s., and Santos-Silva, A. (2009). Effects of olive oil polyphenols on erythrocyte oxidative damage. Molecular Nutrition & Food Research 53 (5): 609–616.

      291 291 Kuroda, Y. and Hara, Y. (1999). Antimutagenic and anticarcinogenic activity of tea polyphenols. Mutation Research/Reviews in Mutation Research 436 (1): 69–97.

      292 292 Cardador-Martinez, A., Castano-Tostado, E., and Loarca-Pina, G. (2002). Antimutagenic activity of natural phenolic compounds present in the common bean (Phaseolus vulgaris) against aflatoxin B 1. Food Additives and Contaminants 19 (1): 62–69.

      293 293 Yoda, Y., Hu, Z.-Q., Shimamura, T., and Zhao, W.-H. (2004). Different susceptibilities of Staphylococcus and Gram-negative rods to epigallocatechin gallate. Journal of Infection and Chemotherapy 10 (1): 55–58.

      294 294 Chung, K.-T., Wei, C.-I., and Johnson, M.G. (1998). Are tannins a double-edged sword in biology and health? Trends in Food Science & Technology 9 (4): 168–175.

      295 295 Carrasco-Castilla, J., Hernández-Àlvarez, A.J., Jiménez-Martínez, C., Gutiérrez-López, G.F., and Dávila-Ortiz, G. (2012). Use of proteomics and peptidomics methods in food bioactive peptide science and engineering. Food Engineering Reviews 4 (4): 224–243.

      296 296 Xia, E.-Q., Deng, G.-F., Guo, Y.-J., and Li, H.-B. (2010). Biological activities of polyphenols from grapes. International Journal of Molecular Sciences 11: 622–646.

      297 297 Wei, H., Bowen, R., Cai, Q., Barnes, S., and Wang, Y. (1995). Antioxidant and antipromotional effects of the soybean isoflavone genistein. Experimental Biology and Medicine 208 (1): 124–130.

      298 298 Surh, Y.-J., Hurh, Y.-J., Kang, J.-Y., Lee, E., Kong, G., and Lee, S.J. (1999). Resveratrol, an antioxidant present in red wine, induces apoptosis in human promyelocytic leukemia (HL-60) cells. Cancer Letters 140 (1–2): 1–10.

      299 299 Hou, D.-X., Fujii, M., Terahara, N., and Yoshimoto, M. (2004). Molecular mechanisms behind the chemopreventive effects of anthocyanidins. Journal of Biomedicine and Biotechnology 2004 (5): 321–325.

      300 300 Lutke-Eversloh, T., Bergander, K., Luftmann, H., and Steinbuchel, A. (2001). Identification of a new class of biopolymer: bacterial synthesis of a sulfur-containing polymer with thioester linkages. Microbiology (Reading) 147 (Pt 1): 11–19.

      Конец ознакомительного фрагмента.

      Текст предоставлен ООО «ЛитРес».

      Прочитайте