Группа авторов

Principles in Microbiome Engineering


Скачать книгу

subtypes classified by Fusobacterium nucleatum in tumor tissue. JAMA Oncol. 3 (7): 921–927.

      236 236 Martin, C.R., Osadchiy, V., Kalani, A., and Mayer, E.A. (2018). The brain‐gut‐microbiome axis. Cell. Mol. Gastroenterol. Hepatol. 6 (2): 133–148.

      237 237 Luna, R.A., Savidge, T.C., and Williams, K.C. (2016). The brain‐gut‐microbiome axis: what role does it play in autism spectrum disorder? Curr. Dev. Disord. Rep. 3 (1): 75–81.

      238 238 Vuong, H.E. and Hsiao, E.Y. (2017). Emerging roles for the gut microbiome in autism spectrum disorder. Biol. Psychiatry 81 (5): 411–423.

      239 239 Ghaisas, S., Maher, J., and Kanthasamy, A. (2016). Gut microbiome in health and disease: linking the microbiome‐gut‐brain axis and environmental factors in the pathogenesis of systemic and neurodegenerative diseases. Pharmacol. Ther. 158: 52–62.

      240 240 Jiang, C., Li, G., Huang, P., et al. (2017). The gut microbiota and Alzheimer's disease. J. Alzheimers Dis. 58: 1–15.

      241 241 Peng, B., Xue, G., Xu, D., et al. (2019). Expression and purification of recombinant serine protease domain of human coagulation factor XII in Pichia pastoris. Biosci. Biotechnol. Biochem. 83 (10): 1815–1821.

      242 242 Norman, K.L., Shively, C.A., De la Rocha, A.J., et al. (2018). Inositol polyphosphates regulate and predict yeast pseudohyphal growth phenotypes. PLoS Genet. 14 (6): e1007493.

      243 243 McElhanon, B.O., McCracken, C., Karpen, S., and Sharp, W.G. (2014). Gastrointestinal symptoms in autism spectrum disorder: a meta‐analysis. Pediatrics 133 (5): 872–883.

      244 244 Parracho, H.M., Bingham, M.O., Gibson, G.R., and Mccartney, A. (2005). Differences between the gut microflora of children with autistic spectrum disorders and that of healthy children. J. Med. Microbiol 54 (10): 987–991.

      245 245 Finegold, S.M., Molitoris, D., Song, Y., et al. (2002). Gastrointestinal microflora studies in late‐onset autism. Clin. Infect. Dis. 35 (Suppl. 1): S6–S16.

      246 246 Song, Y., Liu, C., and Finegold, S.M. (2004). Real‐time PCR quantitation of clostridia in feces of autistic children. Appl. Environ. Microbiol. 70 (11): 6459–6465.

      247 247 Williams, B.L., Hornig, M., Buie, T., et al. (2011). Impaired carbohydrate digestion and transport and mucosal dysbiosis in the intestines of children with autism and gastrointestinal disturbances. PLoS One 6 (9): e24585.

      248 248 Kang, D.‐W., Park, J.G., Ilhan, Z.E., et al. (2013). Reduced incidence of Prevotella and other fermenters in intestinal microflora of autistic children. PLoS One 8 (7): e68322.

      249 249 Saurman, V., Margolis, K.G., and Luna, R.A. (2020). Autism spectrum disorder as a brain‐gut‐microbiome axis disorder. Dig. Dis. Sci. 65 (3): 818–828.

      250 250 Navarro, F., Pearson, D.A., Fatheree, N., et al. (2015). Are ‘leaky gut’ and behavior associated with gluten and dairy containing diet in children with autism spectrum disorders? Nutr. Neurosci. 18 (4): 177–185.

      251 251 Hyman, S.L., Stewart, P.A., Foley, J., et al. (2016). The gluten‐free/casein‐free diet: a double‐blind challenge trial in children with autism. J. Autism Dev. Disord. 46 (1): 205–220.

      252 252 Ghalichi, F., Ghaemmaghami, J., Malek, A., and Ostadrahimi, A. (2016). Effect of gluten free diet on gastrointestinal and behavioral indices for children with autism spectrum disorders: a randomized clinical trial. World J. Pediatr. 12 (4): 436–442.

      253 253 Newell, C., Bomhof, M.R., Reimer, R.A., et al. (2016). Ketogenic diet modifies the gut microbiota in a murine model of autism spectrum disorder. Mol. Autism. 7 (1): 37.

      254 254 Kraeuter, A.‐K., Phillips, R., and Sarnyai, Z. (2020). Ketogenic therapy in neurodegenerative and psychiatric disorders: from mice to men. Prog. Neuro‐Psychopharmacol. Biol. Psychiatry 101: 109913.

      255 255 Sanctuary, M.R., Kain, J.N., Chen, S.Y., et al. (2019). Pilot study of probiotic/colostrum supplementation on gut function in children with autism and gastrointestinal symptoms. PLoS One 14 (1): e0210064.

      256 256 Arnold, L.E., Luna, R.A., Williams, K., et al. (2019). Probiotics for gastrointestinal symptoms and quality of life in autism: a placebo‐controlled pilot trial. J. Child Adolesc. Psychopharmacol. 29 (9): 659–669.

      257 257 Sampson, T.R., Debelius, J.W., Thron, T., Janssen, S., et al. (2016). Gut microbiota regulate motor deficits and neuroinflammation in a model of Parkinson's disease. Cell 167 (6): 1469–1480.e12.

      258 258 Miraglia, F. and Colla, E. (2019). Microbiome, Parkinson's disease and molecular mimicry. Cells 8 (3): 222.

      259 259 Vuotto, C., Battistini, L., Caltagirone, C., and Borsellino, G. (2020). Gut microbiota and disorders of the central nervous system. Neuroscientist, p. https://doi.org/10.1177/1073858420918826.

      260 260 Akbari, E., Asemi, Z., Kakhaki, R.D., Bahmani, F., et al. (2016). Effect of probiotic supplementation on cognitive function and metabolic status in Alzheimer's disease: a randomized, double‐blind and controlled trial. Frontiers in aging neuroscience, 8, 256.

      261 261 Castelli, V., d'Angelo, M., Lombardi, F., Alfonsetti, M., et al. (2020). Effects of the probiotic formulation SLAB51 in in vitro and in vivo Parkinson's disease models. Aging‐Us 12 (5): 4641–4659.

      262 262 Wu, F., Guo, X., Zhang, M., Ou, Z., et al. (2020). An Akkermansia muciniphila subtype alleviates high‐fat diet‐induced metabolic disorders and inhibits the neurodegenerative process in mice. Anaerobe 61:102138

      263 263 Costa, J., Lunet, N., Santos, C., Santos, J., et al. (2010). Caffeine exposure and the risk of Parkinson's disease: a systematic review and meta‐analysis of observational studies. J. Alzheimers Dis. 20 (Suppl. 1): S221–S238.

      264 264 Khadrawy, Y.A., Salem, A.M., EI‐Shamy, K.A., Ahmed, E.K., et al. (2017). Neuroprotective and therapeutic effect of caffeine on the rat model of Parkinson's disease induced by rotenone. J. Dietary Suppl. 14 (5): 553–572.

      265 265 Sonsalla, P.K., Wong, L.Y., Harris, S.L., Richardson, J.R., et al. (2012). Delayed caffeine treatment prevents nigral dopamine neuron loss in a progressive rat model of Parkinson's disease. Exp. Neurol. 234 (2): 482–487.

      266 266 Yang, X. and Cheng, B. (2010). Neuroprotective and anti‐inflammatory activities of ketogenic diet on MPTP‐induced neurotoxicity. J. Mol. Neurosci. 42 (2): 145–153.

      267 267 Phillips, M.C.L., Murtagh, D.K.J., Gilbertson, L.J., Asztely, F.J.S., et al. (2018). Low‐fat versus ketogenic diet in Parkinson's disease: a pilot randomized controlled trial. Mov Disord. 33 (8): 1306–1314.

      268 268 Taylor, M.K., Sullivan, D.K., Mahnken, J.D., Burns, J.M., et al. (2018). Feasibility and efficacy data from a ketogenic diet intervention in Alzheimer's disease. Alzheimer's & Dement.: Transl. Res. Clin. Interv. 4: 28–36.

      269 269 Brownlow, M.L., Benner, L., D'Agostino, D., Gordon, M.N., et al. (2013). Ketogenic diet improves motor performance but not cognition in two mouse models of Alzheimer's pathology. PLoS One 8 (9): e75713.

      270 270 Van der Auwera, I., Wera, S., Leuven, F.V., and Henderson, S.T. (2005). A ketogenic diet reduces amyloid beta 40 and 42 in a mouse model of Alzheimer's disease. Nutr. Metab. 2 (1): 28.

      271 271 Bäckhed, F., Ding, H., Wang, T., Hooper, L.V., et al. (2004). The gut microbiota as an environmental factor that regulates fat storage. Proc Natl Acad Sci U S A. 101 (44): 15718–15723.

      272 272 Ridaura, V.K., Faith, J.J., Rey, F.E., Cheng, J., et al. (2013). Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science 341 (6150): 1079–U49.

      273 273 Sanz, Y. and Santacruz, A. (2008). Evidence on the role of gut microbes in obesity Revisión. Rev. Esp. Obesidad 6 (5): 256‐263.

      274 274 Hooper, L.V., Wong, M.H., Thelin, A., Hansson, L., et al. (2001). Molecular analysis of commensal host‐microbial relationships in the intestine. Science. 291 (5505): 881–884.

      275 275 Backhed, F., Manchester, J.K., Semenkovich, C.F., and Gordon, J.I. (2007). Mechanisms underlying the resistance to diet‐induced