Группа авторов

Sustainable Solutions for Environmental Pollution, Volume 2


Скачать книгу

for international development, Persley, and G. (Eds.), pp. 53–77, CAB International, Wallingford, 1990.

      Daud, M.K., Ali, S., Abbas, Z., Zaheer, I.E., Riaz, M.A., Malik, A., Hussain, A., Rizwan, M., Zia-ur-Rehman, M., Zhu, S.J., Potential of duckweed Lemna minor for the phytoremediation of landfill leachate. J. Chem., 2018, 3951540, 2018, doi: 10.1155/2018/3951540.

      de la Fourniere, E.M., Vega, N.A., Muller, N.A., Pizarro, R.A., Debray, M.E., Determinación del mercurio en tejidos vegetales por microPIXE: Aplicación al estudio de la hiperacumulación por Spirodela intermedia (Lemnaceae). Bol. Soc Argent. Bot., 54, 2, 263–275, 2019, doi: 10.31055/1851.2372.v54. n2.24373.

      De Stefani, G., Tocchetto, D., Salvato, M., Borin, M., Performance of a floating treatment wetland for in-stream water amelioration in NE Italy. Hydrobiologia, 674, 1, 157–167, 2011, doi: 10.1007/s10750-011-0730-4.

      Dehotin, J., Breil, P., Braud, I., de Lavenne, A., Lagouy, M., Sarrazin, B., Detecting surface runoff location in a small catchment using distributed and simple observation method. J. Hydrol., 525, 113–129, 2015, doi: 10.1016/j. jhydrol.2015.02.051.

      Dévai, I. and Delaune, R.D., Evidence for phosphine production and emission from Louisiana and Florida marsh soils. Org. Geochem., 23, 3, 277–279, 1995, doi: 10.1016/0146-6380(95)00021-6.

      Devai, I., DeLaune, R.D., Devai, G., Patrick, W.H., Czegeny, I., Phosphine production potential of various wastewater and sewage sludge sources. Anal. Lett., 32, 7, 1447–1457, 1999, doi: 10.1080/00032719908542909.

      Diaz, R.J. and Rosenberg, R., Spreading dead zones and consequences for marine ecosystems. Science, 321, 5891, 926–929, 2008, doi: 10.1126/science.1156401.

      Diaz, S., Fargione, J., Chapin III, F.S., & Tilman, D., Biodiversity loss threatens human well-being. PloS Biol., 4, e277, 2006. doi: 10.1371/journal.pbio.0040277.

      Dogan, M., Karatas, M., Aasim, M., Cadmium and lead bioaccumulation potentials of an aquatic macrophyte Ceratophyllum demersum L.: A laboratory study. Ecotox. Environ. Safe., 148, 431–440, 2018, doi: 10.1016/j.ecoenv.2017.10.058.

      Doherty, L., Zhao, Y.Q., Zhao, X.H., Hu, Y.S., Hao, X.D., Xu, L., Liu, R.B., A review of a recently emerged technology: Constructed wetland - Microbial fuel cells. Water Res., 85, 38–45, 2015, doi: 10.1016/j.watres.2015.08.016.

      Domínguez-Garay, A., Quejigo, J.R., Dörfler, U., Schroll, R., Esteve-Núñez, A., Bioelectroventing: an electrochemical-assisted bioremediation strategy for cleaning-up atrazine-polluted soils. Microb. Biotechnol., 1, 1, 50–62, 2018, doi: 10.1111/1751-7915.12687.

      Donovan, C., Dewan, A., Heo, D., & Beyenal, H., Batteryless, Wireless Sensor Powered by a Sediment Microbial Fuel Cell. Environ. Sci. Technol., 42, 22, 8591–8596, 2008. doi: 10.1021/es801763g.

      Drake, C.W., Jones, C.S., Schilling, K.E., Amado, A.A., Weber, L.J., Estimating nitrate-nitrogen retention in a large constructed wetland using high-frequency, continuous monitoring and hydrologic modeling. Ecol. Eng., 117, 69–83, 2018, doi: 10.1016/j.ecoleng.2018.03.014.

      Driever, S.M., Nes, E.H.v., Roijackers, R.M.M., Growth limitation of Lemna minor due to high plant density. Aquat. Bot., 81, 3, 245–251, 2005, doi: 10.1016/j. aquabot.2004.12.002.

      Du, Y., Gao, S., Warwick, R.M., Hua, E., Ecological functioning of free-living marine nematodes in coastal wetlands: an overview. Chin. Sci., Bull., 59, 34, 4692–4704, 2014, doi: 10.1007/s11434-014-0592-z.

      Dunne, E.J., Coveney, M.F., Marzolf, E.R., Hoge, V.R., Conrow, R., Naleway, R., Lowe, E.F., Battoe, L.E., Efficacy of a large-scale constructed wetland to remove phosphorus and suspended solids from Lake Apopka, Florida. Ecol. Eng., 42, 90–100, 2012, doi: 10.1016/j.ecoleng.2012.01.019.

      Eid, E.M., Shaltout, K.H., Asaeda, T., Modeling growth dynamics of Typha domingensis (Pers.) Poir. ex Steud. in Lake Burullus, Egypt. Ecol. Modell., 243, 63–72, 2012, doi: 10.1016/j.ecolmodel.2012.05.028.

      Ekperusi, A.O., Sikoki, F.D., Nwachukwu, E.O., Application of common duckweed (Lemna minor) in phytoremediation of chemicals in the environment: State and future perspective. Chemosphere, 223, 285–309, 2019, doi: 10.1016/j. chemosphere.2019.02.025.

      El-Mufleh, A., Béchet, B., Ruban, V., Legret, M., Clozel, B., Barraud, S., Gonzalez- Merchan, C., Bedell, J.-P., Delolme, C., Review on physical and chemical characterizations of contaminated sediments from urban stormwater infiltration basins within the framework of the French observatory for urban hydrology (SOERE URBIS). Environ. Sci. Pollut. Res., 21, 8, 5329–5346, 2014, doi: 10.1007/s11356-013-2490-3.

      EPA. Introduction to In Situ Bioremediation of Groundwater, p. 89, U.S. Environmental Protection Agency Office of Superfund Remediation and Technology Innovation, Washington (D.C.), 2013.

      Esteve-Nunez, A., Rothermich, M., Sharma, M., Lovley, D., Growth of Geobacter sulfurreducens under nutrient-limiting conditions in continuous culture. Environ. Microbiol., 7, 5, 641–648, 2005, doi: 10.1111/ j.1462-2920.2005.00731.x.

      Fabbri, D., Maurino, V., Minella, M., Minero, C., Vione, D., Modelling the photochemical attenuation pathways of the fibrate drug gemfibrozil in surface waters. Chemosphere, 170, 124–133, 2017, doi: 10.1016/j.chemosphere.2016.11.135.

      Faivre, N., Fritz, M., Freitas, T., de Boissezon, B., Vandewoestijne, S., Nature-Based Solutions in the EU: Innovating with nature to address social, economic and environmental challenges. Environ. Res., 159, 509–518, 2017, doi: 10.1016/j. envres.2017.08.032.

      Fang, Z., Song, H.L., Cang, N., Li, X.N., Electricity production from Azo dye wastewater using a microbial fuel cell coupled constructed wetland operating under different operating conditions. Biosens. Bioelectron., 68, 135–141, 2015, doi: 10.1016/j.bios.2014.12.047.

      Fard, R.F., Azimi, A.A., Bidhendi, G.R.N., Batch kinetics and isotherms for biosorption of cadmium onto biosolids. Desalin. Water Treat., 28, 1–3, 69–74, 2011, doi: 10.5004/dwt.2011.2203.

      Fournel, J., Forquet, N., Molle, P., Grasmick, A., Modeling constructed wetlands with variably saturated vertical subsurface-flow for urban stormwater treatment. Ecol. Engin., 55, 1–8, 2013, doi: 10.1016/j.ecoleng.2013.02.004.

      Friedman, E.S., McPhillips, L.E., Werner, J.J., Poole, A.C., Ley, R.E., Walter, M.T., Angenent, L.T., Methane Emission in a Specific Riparian-Zone Sediment Decreased with Bioelectrochemical Manipulation and Corresponded to the Microbial Community Dynamics. Front. Microbiol., 6, 1523, 1–12, 2016, doi: 10.3389/fmicb.2015.01523.

      Fripp, J., Ziemkiewicz, P.F., Charkavorki, H., Acid Mine Drainage Treatment, Technical Report # ERDC TN-EMRRPSR-14, EMRRP Technical Notes Collection, Fort Belvoir (Virginia), 2000, http://el.erdc.usace.army.mil/elpubs/pdf/sr14.pdf.

      Gajda, I., Greenman, J., Melhuish, C., Ieropoulos, I.A., Electricity and disinfectant production from wastewater: Microbial Fuel Cell as a self-powered electrolyser. Sci. Rep., 6, 25571, 2016, doi: 10.1038/srep25571.

      Galal, T.M., Eid, E.M., Dakhil, M.A., Hassan, L.M., Bioaccumulation and rhizofiltration potential of Pistia stratiotes L. for mitigating water pollution in the Egyptian wetlands. Int. J. Phytoremediat., 20, 5, 440–447, 2018, doi: 10.1080/15226514.2017.1365343.

      Gale, I., Strategies for managed aquifer recharge in semi-arid areas, UNESCO, Paris (France, 2005).

      Gao, H., Zhai, S.J., Sun, Z.G., Liu, J., Tong, C., Differences in biomass and silica content in typical plant communities with ecotones in the Min River estuary of southeast China. PeerJ, 7, 17, 2019, doi: 10.7717/peerj.7218.

      Gao, L., Zhou, W., Huang, J., He, S., Yan, Y., Zhu, W., Wu, S., Zhang, X., Nitrogen removal by the enhanced