advancement and prospective of heterogeneous carbonaceous catalysts in chemical and enzymatic transformation of biodiesel. Energy Convers. Manag. 167: 176–202.
21 21 D’Souza, R., Vats, T., Chattree, A., and Siril, P.F. (2018). Graphene supported magnetically separable solid acid catalyst for the single step conversion of waste cooking oil to biodiesel. Renew. Energy 126: 1064–1073.
22 22 Kataria, J., Mohapatra, S.K., and Kundu, K. (2019). Biodiesel production from waste cooking oil using heterogeneous catalysts and its operational characteristics on variable compression ratio CI engine. J. Energy Inst. 92 (2): 275–287.
23 23 Joshi, G., Rawat, D.S., Lamba, B.Y. et al. (2015). Transesterification of Jatropha and Karanja oils by using waste egg shell derived calcium based mixed metal oxides. Energy Convers. Manag. 96: 258–267.
24 24 Adepoju, T.F., Ibeh, M.A., and Asuquo, A.J. (2021). Elucidate three novel catalysts synthesized from animal bones for the production of biodiesel from ternary non‐edible and edible oil blend: a case of Jatropha curcus, Hevea brasiliensis, and Elaeis guineensis oil. S. Afr. J. Chem. Eng. 36: 58–73.
25 25 Mansir, N., Teo, S.H., Rashid, U. et al. (2018). Modified waste egg shell derived bifunctional catalyst for biodiesel production from high FFA waste cooking oil. A review. Renew. Sustain. Energy Rev. 82: 3645–3655.
26 26 Eze, V.C., Phan, A.N., and Harvey, A.P. (2018). Intensified one‐step biodiesel production from high water and free fatty acid waste cooking oils. Fuel 220: 567–574.
27 27 Mohamed, M.M., Bayoumy, W.A., El‐Faramawy, H. et al. (2020). A novel α‐Fe2O3/AlOOH(γ‐Al2O3) nanocatalyst for efficient biodiesel production from waste oil: kinetic and thermal studies. Renew. Energy 160: 450–464.
28 28 Shahraki, H., Entezari, M.H., and Goharshadi, E.K. (2015). Sono‐synthesis of biodiesel from soybean oil by KF/γ‐Al2O3 as a nano‐solid‐base catalyst. Ultrason. Sonochem. 23: 266–274.
29 29 Mazumdar, P., Borugadda, V.B., Goud, V.V., and Sahoo, L. (2012). Physico‐chemical characteristics of Jatropha curcas L. of North East India for exploration of biodiesel. Biomass Bioenergy 46: 546–554.
30 30 Abomohra, A.E.F., Elsayed, M., Esakkimuthu, S. et al. (2020). Potential of fat, oil and grease (FOG) for biodiesel production: a critical review on the recent progress and future perspectives. Prog. Energy Combust. Sci. 81: 100868.
31 31 Maroa, S. and Inambao, F. (2020). Biodiesel, Combustion, Performance and Emissions Characteristics. Springer Publishers.
32 32 Tabatabaei, M. and Aghbashlo, M. (2019). Biodiesel. From Production to Combustion, 239. Springer Publishers.
33 33 Farid, M.A.A., Roslan, A.M., Hassan, M.A. et al. (2020). Net energy and techno‐economic assessment of biodiesel production from waste cooking oil using a semi‐industrial plant: a Malaysia perspective. Sustain. Energy Technol. Assess. 39: 100700.
34 34 Lani, N.S., Ngadi, N., Yahya, N.Y., and Rahman, R.A. (2017). Synthesis, characterization and performance of silica impregnated calcium oxide as heterogeneous catalyst in biodiesel production. J. Clean. Prod. 146: 116–124.
35 35 Talebian‐Kiakalaieh, A., Amin, N.A.S., and Mazaheri, H. (2013). A review on novel processes of biodiesel production from waste cooking oil. Appl. Energy 104: 683–710.
36 36 Long, Y.D., Fang, Z., Su, T.C., and Yang, Q. (2014). Co‐production of biodiesel and hydrogen from rapeseed and Jatropha oils with sodium silicate and Ni catalysts. Appl. Energy 113: 1819–1825.
37 37 Martínez, S.L., Romero, R., Natividad, R., and González, J. (2014). Optimization of biodiesel production from sunflower oil by transesterification using Na2O/NaX and methanol. Catal. Today 220–222: 12–20.
38 38 Tamjidi, S., Esmaeili, H., and Moghadas, B.K. (2021). Performance of functionalized magnetic nanocatalysts and feedstocks on biodiesel production: a review study. J. Clean. Prod. 305: 127200.
39 39 Shan, R., Lu, L., Shi, Y. et al. (2018). Catalysts from renewable resources for biodiesel production. Energy Convers. Manag. 178: 277–289.
40 40 Pinto, B.F., Garcia, M.A.S., Costa, J.C.S. et al. (2019). Effect of calcination temperature on the application of molybdenum trioxide acid catalyst: screening of substrates for biodiesel production. Fuel 239: 290–296.
41 41 Murray, R., King, G., and Wyse‐Mason, R. (2019). Micro‐emulsification vs. transesterification: an investigation of the efficacy of methanol use in improving vegetable oil engine performance. Biofuels https://doi.org/10.1080/17597269.2019.1598316.
42 42 Marwaha, A., Rosha, P., Mohapatra, S.K. et al. (2018). Waste materials as potential catalysts for biodiesel production: current state and future scope. Fuel Process. Technol. 181: 175–186.
43 43 Rashid, U., Anwar, F., Yunus, R., and Al‐Muhtaseb, A.H. (2015). Transesterification for biodiesel production using thespesia populnea seed oil: an optimization study. Int. J. Green Energy 12: 479–484.
44 44 Thiyagarajan, S., Sonthalia, A., Edwin Geo, V. et al. (2020). Effect of manifold injection of methanol/n‐pentanol in safflower biodiesel fuelled CI engine. Fuel 261: 116378.
45 45 Lertpanyapornchai, B. and Ngamcharussrivichai, C. (2015). Mesostructured Sr and Ti mixed oxides as heterogeneous base catalysts for transesterification of palm kernel oil with methanol. Chem. Eng. J. 264: 789–796.
46 46 Rashid, U., Anwar, F., Ashraf, M. et al. (2011). Application of response surface methodology for optimizing transesterification of Moringa oleifera oil: biodiesel production. Energy Convers. Manag. 52 (8–9): 3034–3042.
47 47 Rashid, U., Ibrahim, M., Yasin, S. et al. (2013). Biodiesel from Citrus reticulata (mandarin orange) seed oil, a potential non‐food feedstock. Ind. Crop. Prod. 45: 355–359.
48 48 Buasri, A., Lukkanasiri, M., Nernrimnong, R. et al. (2016). Rapid transesterification of Jatropha curcas oil to biodiesel using novel catalyst with a microwave heating system. Korean J. Chem. Eng. 33: 3388–3400.
49 49 Koutsouki, A.A., Tegou, E., Kontakos, S. et al. (2015). In situ transesterification of Cynara cardunculus L. seed oil via direct ultrasonication for the production of biodiesel. Fuel Process. Technol. 134: 122–129.
50 50 Anwar, F., Rashid, U., Ashraf, M., and Nadeem, M. (2010). Okra (Hibiscus esculentus) seed oil for biodiesel production. Appl. Energy 87 (3): 779–785.
51 51 Rashid, U., Ibrahim, M., Ali, S. et al. (2012). Comparative study of the methanolysis and ethanolysis of maize oils using alkaline catalysts. Grasas Aceites 63 (1): 35–43.
52 52 Barminas, J.T., Maina, H.M., Tahir, S. et al. (2001). A preliminary investigation into the biofuel characteristics of tigernut (Cyperus esculentus). Bioresource Technology 79 (1): 87–89.
53 53 Sbihi, H.M., Nehdi, I.A., Blidi, L.E. et al. (2015). Lipase/enzyme catalyzed biodiesel production from Prunus mahaleb: a comparative study with base catalyzed biodiesel production. Ind. Crop. Prod. 76: 1049–1054.
54 54 Rashid, U., Knothe, G., Yunus, R., and Evangelista, R.L. (2014). Kapok oil methyl esters. Biomass Bioenerg. 66: 419–425.
55 55 Sharma, S., Saxena, V., Baranwal, A. et al. (2018). Engineered nanoporous materials mediated heterogeneous catalysts and their implications in biodiesel production. Mater. Sci. Energ. Technol. 1 (1): 11–21.
56 56 Mokbli, S., Nehdi, I.A., Sbihi, H.M. et al. (2018). Yucca aloifolia seed oil: a new source of bioactive compounds. Waste Biomass Valori. 9 (7): 1087–1093.
57 57 Syam, A.M., Rashid, U., Yunus, R. et al. (2016). Conversion of Oleum papaveris seminis oil into methyl esters via esterification process: optimization and kinetic study. Grasas Aceites 67 (1): e115.
58 58 Karmakar, B., Samanta, S., and Halder, G. (2020). Delonix regia heterogeneous catalyzed two‐step biodiesel production from Pongamia pinnata oil using methanol and 2‐propanol. J. Clean. Prod. 255: 120313.
59 59 Angin, D. and Şensöz, S. (2014). Effect of pyrolysis temperature on chemical and surface properties of biochar of rapeseed (Brassica napus