Tormod Næs

Multiblock Data Fusion in Statistics and Machine Learning


Скачать книгу

267

      302  268

      303  269

      304  270

      305  271

      306  272

      307  273

      308  274

      309  275

      310  276

      311  277

      312  278

      313  279

      314  280

      315  281

      316  282

      317  283

      318  284

      319  285

      320  286

      321  287

      322  288

      323  289

      324  290

      325  291

      326  292

      327  293

      328  294

      329  295

      330  296

      331  297

      332  298

      333  299

      334  300

      335  301

      336  302

      337  303

      338  304

      339  305

      340  306

      341  307

      342  308

      343  309

      344  310

      345  311

      346  312

      347  313

      348  314

      349  315

      350  316

      351  317

      352  318

      353  319

      354  320

      355  321

      356  322

      357  323

      358  324

      359  325

      360  326

      361  327

      362  328

      363  329

      364  330

      365  331

      366  332

      367  333

      368  334

      369  335

      370  336

      371  337

      372  338

      373  339

      374  340

      375  341

      376  342

      377  343

      378  344

      379  345

      380  346

      381  347

      382  348

      383  349

      384  350

      385  351

      386 352

      387 353

      388 354

      389 355

      390 356

      391 357

      392 358

      393 359

      394 360

      395 361

      396 362

      397 363

      398 364

      399 365

      400 366

      401 367

      402 368

      403 369

      404 370

      405 371

      406 372

      407  373

      408 374

      409 375

      410 376

      411 377

      412 378

      It is a real honour to write a few introductory words about Multiblock Data Fusion in Statistics and Machine Learning. The book is maybe not timely! The subject has been around in chemometrics since the late 1980s; usually under the term multiblock analysis.

      Let me take that back immediately–the book is definitely timely. Even though this subject has been discussed for decades, it has taken off dramatically lately. And not only in chemometrics, but in a variety of fields. There are many diverse and interesting developments and in fact, it is quite difficult to really understand what is going on and to filter or even just understand the literature from so many sources. Each field will have their own internal jargon and background. This may be the biggest obstacle right now. It is evident that there are many interesting developments but grasping them is next to impossible. This book fixes that. And not only that, this book provides a comprehensive overview across fields and it also adds perspective and new research where needed. I would argue that this is the place if you want to understand data fusion comprehensively.

      That is, if you want to understand how to apply data fusion; or you want to develop new data fusion models; or learn how the algorithms and models work; or maybe you want to understand what the shortcomings of different approaches are. If you have questions like these or you simply want to know what is happening in this area of data science, then reading this book will be a nice and fulfilling experience.

      To write a comprehensive book about such an enormous field requires special people. And indeed, there are three very competent persons behind this book. They have all worked within the