Группа авторов

Interventional Cardiology


Скачать книгу

Mechanisms regulating endothelial cell barrier function. Am J Physiol Lung Cell Mol Physiol. 2000; 279:L419–22.

      17 17 De Caterina R, Libby P, Peng HB, et al. Nitric oxide decreases cytokine‐induced endothelial activation. Nitric oxide selectively reduces endothelial expression of adhesion molecules and proinflammatory cytokines. J Clin Invest. 1995; 96:60–8.

      18 18 Frangogiannis NG. Targeting the inflammatory response in healing myocardial infarcts. Curr Med Chem. 2006; 13:1877–93.

      19 19 Gainetdinov RR, Premont RT, Bohn LM, et al. Desensitization of G protein‐coupled receptors and neuronal functions. Annu Rev Neurosci. 2004; 27:107–44.

      20 20 Pober JS. Effects of tumour necrosis factor and related cytokines on vascular endothelial cells. Ciba Found Symp. 1987; 131:170–84.

      21 21 Petrache I, Birukova A, Ramirez SI, et al. The role of the microtubules in tumor necrosis factor‐alpha‐induced endothelial cell permeability. Am J Respir Cell Mol Biol. 2003; 28:574–81.

      22 22 Cybulsky MI, Gimbrone MA, Jr. Endothelial expression of a mononuclear leukocyte adhesion molecule during atherogenesis. Science. 1991; 251:788–91.

      23 23 Osborn L, Hession C, Tizard R, et al. Direct expression cloning of vascular cell adhesion molecule 1, a cytokine‐induced endothelial protein that binds to lymphocytes. Cell. 1989; 59:1203–11.

      24 24 Lambert JM, Lopez EF, Lindsey ML. Macrophage roles following myocardial infarction. Int J Cardiol. 2008; 130:147–58.

      25 25 Frangogiannis NG, Mendoza LH, Ren G, et al. MCSF expression is induced in healing myocardial infarcts and may regulate monocyte and endothelial cell phenotype. Am J Physiol Heart Circ Physiol. 2003; 285:H483–92.

      26 26 Hansson GK, Libby P. The immune response in atherosclerosis: a double‐edged sword. Nat Rev Immunol. 2006; 6:508–19.

      27 27 Hansson GK, Libby P, Schonbeck U, Yan ZQ. Innate and adaptive immunity in the pathogenesis of atherosclerosis. Circ Res. 2002; 91:281–91.

      28 28 Verma S, Devaraj S, Jialal I. Is C‐reactive protein an innocent bystander or proatherogenic culprit? C‐reactive protein promotes atherothrombosis. Circulation. 2006; 113:2135–50; discussion 2150.

      29 29 Rader DJ, Daugherty A. Translating molecular discoveries into new therapies for atherosclerosis. Nature. 2008; 451:904–13.

      30 30 Herder M, Arntzen KA, Johnsen SH, et al. Long‐term use of lipid‐lowering drugs slows progression of carotid atherosclerosis: the Tromso study 1994 to 2008. Arterioscler Thromb Vasc Biol. 2013; 33:858–62.

      31 31 Puri R, Nissen SE, Shao M, et al. Antiatherosclerotic effects of long‐term maximally intensive statin therapy after acute coronary syndrome: insights from Study of Coronary Atheroma by Intravascular Ultrasound: Effect of Rosuvastatin Versus Atorvastatin. Arterioscler Thromb Vasc Biol. 2014; 34:2465–72.

      32 32 Berneis KK, Krauss RM. Metabolic origins and clinical significance of LDL heterogeneity. J Lipid Res. 2002; 43:1363–79.

      33 33 Rader DJ, Hovingh GK. HDL and cardiovascular disease. The Lancet. 2014; 384:618–625.

      34 34 Barter PJ, Caulfield M, Eriksson M, et al. Effects of torcetrapib in patients at high risk for coronary events. N Engl J Med. 2007; 357:2109–22.

      35 35 Toth PP, Barter PJ, Rosenson RS, et al. High‐density lipoproteins: a consensus statement from the National Lipid Association. J Clin Lipidol. 2013; 7:484–525.

      36 36 Degoma EM, Rader DJ. Novel HDL‐directed pharmacotherapeutic strategies. Nat Rev Cardiol. 2011; 8:266–77.

      37 37 Kratzer A, Giral H, Landmesser U. High‐density lipoproteins as modulators of endothelial cell functions: alterations in patients with coronary artery disease. Cardiovasc Res. 2014; 103:350–61.

      38 38 Boren J, Williams KJ. The central role of arterial retention of cholesterol‐rich apolipoprotein‐B‐containing lipoproteins in the pathogenesis of atherosclerosis: a triumph of simplicity. Curr Opin Lipidol. 2016; 27:473–83.

      39 39 Miller YI, Choi SH, Wiesner P et al. Oxidation‐specific epitopes are danger‐associated molecular patterns recognized by pattern recognition receptors of innate immunity. Circ Res. 2011; 108:235–48.

      40 40 Navab M, Ananthramaiah GM, Reddy ST, et al. The oxidation hypothesis of atherogenesis: the role of oxidized phospholipids and HDL. J Lipid Res. 2004; 45:993–1007.

      41 41 Linton MRF, Yancey PG, Davies SS, et al. The Role of Lipids and Lipoproteins in Atherosclerosis. In: KR Feingold, B Anawalt, A Boyce, et al. eds. Endotext South Dartmouth (MA); 2000.

      42 42 Gistera A, Hansson GK. The immunology of atherosclerosis. Nat Rev Nephrol. 2017; 13:368–380.

      43 43 Witztum JL, Steinberg D. The oxidative modification hypothesis of atherosclerosis: does it hold for humans? Trends Cardiovasc Med. 2001; 11:93–102.

      44 44 Stocker R, Keaney JF, Jr. Role of oxidative modifications in atherosclerosis. Physiol Rev. 2004; 84:1381–478.

      45 45 Quinn MT, Gauss KA. Structure and regulation of the neutrophil respiratory burst oxidase: comparison with nonphagocyte oxidases. J Leukoc Biol. 2004; 76:760–81.

      46 46 Lambeth JD. NOX enzymes and the biology of reactive oxygen. Nat Rev Immunol. 2004; 4:181–9.

      47 47 Octavia Y, Brunner‐La Rocca HP, Moens AL. NADPH oxidase‐dependent oxidative stress in the failing heart: From pathogenic roles to therapeutic approach. Free Radic Biol Med. 2012; 52:291–7.

      48 48 Opitz N, Drummond GR, Selemidis S, et al. The 'A's and 'O's of NADPH oxidase regulation: a commentary on “Subcellular localization and function of alternatively spliced Noxo1 isoforms”. Free Radic Biol Med. 2007; 42:175–9.

      49 49 Lyle AN, Griendling KK. Modulation of vascular smooth muscle signaling by reactive oxygen species. Physiology (Bethesda). 2006; 21:269–80.

      50 50 Briones AM, Tabet F, Callera GE, et al. Differential regulation of Nox1, Nox2 and Nox4 in vascular smooth muscle cells from WKY and SHR. J Am Soc Hypertens. 2011; 5:137–53.

      51 51 Akki A, Zhang M, Murdoch C, et al. NADPH oxidase signaling and cardiac myocyte function. J Mol Cell Cardiol. 2009; 47:15–22.

      52 52 Kattoor AJ, Pothineni NVK, Palagiri D, Mehta JL. Oxidative Stress in Atherosclerosis. Curr Atheroscler Rep. 2017; 19:42.

      53 53 Vendrov AE, Hakim ZS, Madamanchi NR, et al. Atherosclerosis is attenuated by limiting superoxide generation in both macrophages and vessel wall cells. Arterioscler Thromb Vasc Biol. 2007; 27:2714–21.

      54 54 Forstermann U, Sessa WC. Nitric oxide synthases: regulation and function. Eur Heart J. 2012; 33:829–37, 837a–837d.

      55 55 Khan BV, Harrison DG, Olbrych MT, et al. Nitric oxide regulates vascular cell adhesion molecule 1 gene expression and redox‐sensitive transcriptional events in human vascular endothelial cells. Proc Natl Acad Sci U S A. 1996; 93:9114–9.

      56 56 Kubes P, Suzuki M, Granger DN. Nitric oxide: an endogenous modulator of leukocyte adhesion. Proc Natl Acad Sci U S A. 1991; 88:4651–5.

      57 57 Zeiher AM, Fisslthaler B, Schray‐Utz B, Busse R. Nitric oxide modulates the expression of monocyte chemoattractant protein 1 in cultured human endothelial cells. Circ Res. 1995; 76:980–6.

      58 58 Teplyakov AI. Endothelin‐1 involved in systemic cytokine network inflammatory response at atherosclerosis. Journal of cardiovascular pharmacology. 2004; 44 Suppl 1:S274–5.

      59 59 Lerman A, Edwards BS, Hallett JW, et al. Circulating and tissue endothelin immunoreactivity in advanced atherosclerosis. N Engl J Med. 1991; 325:997–1001.

      60 60 Dang A, Wang B, Li W, et al. Plasma endothelin‐1 levels and circulating endothelial cells in patients with aortoarteritis. Hypertension research: official journal of the Japanese Society of Hypertension. 2000; 23:541–4.

      61 61 McCarron RM, Wang L, Stanimirovic DB, Spatz M. Endothelin induction of adhesion molecule expression on human brain microvascular endothelial cells. Neuroscience letters. 1993; 156:31–4.

      62 62