Группа авторов

Nitric Oxide in Plants


Скачать книгу

M.H.M.B., Hasanuzzaman, M., Parvin, K. et al. (2020). Nitric oxide and hydrogen sulfide: two intimate collaborators regulating plant defense against abiotic stress. Plant Growth Regulation 90: 409–424. doi:10.1007/s10725-020-00594-4.

      18 Bouchereau, A., Aziz, A., Larher, F. et al. (1999). Polyamines and environmental challenges: recent developments. Plant Science 140: 103–125.

      19 Bozhkov, P.V., Suarez, M.F., Filonova, L.H. et al. (2005). Cysteine protease mcll-Pa executes programmed cell death during plant embryogenesis. Proceedings of the National Academy of Sciences of the United States of America 102: 14463–14468.

      20 Cao, N., Zhan, B., and Zhou, X. (2019). Nitric oxide as a downstream signaling molecule in brassinosteroid-mediated virus susceptibility to maize chlorotic mottle virus in maize. Viruses 11: 368. doi:10.3390/v11040368.

      21 Castillo, M.C., Lozano-Juste, J., Gonzalez-Guzman, M. et al. (2015). Inactivation of PYR/PYL/RCAR ABA receptors by tyrosine nitration may enable rapid inhibition of ABA signaling by nitric oxide in plants. Science Signaling 8: ra89.

      22 Chakraborty, N. and Acharya, K. (2017). “NO way”! Says the plant to abiotic stress. Plant Gene 11: 99–105.

      23 Chen, Z.H., Wang, Y., Wang, J.W. et al. (2016). Nitrate reductase mutation alters potassium nutrition as well as nitric oxide-mediated control of guard cell ion channels in Arabidopsis. New Phytologist 209: 1456–1469. doi:10.1111/nph.13714.

      24 Clarke, A., Desikan, R., Hurst, R.D., Hancock, J.T. et al. (2000). NO way back: nitric oxide and programmed cell death in Arabidopsis thaliana suspension cultures. Plant Journal 24: 667–677.

      25 Corpas, F. and Palma, J. (2018). Assessing nitric oxide (NO) in higher plants: an outline. Nitrogen 1: 3. doi:10.3390/nitrogen1010003.

      26 Corpas, F.J., Barroso, J.B., Carreras, A. et al. (2006). Constitutive arginine-dependent nitric oxide synthase activity in different organs of pea seedlings during plant development. Planta 224: 246–254.

      27 Corpas, F.J., González-Gordo, S., Cañas, A. et al. (2019). Nitric oxide and hydrogen sulfide in plants: which comes first? Journal of Experimental Botany 70: 4391–4404.

      28 Dadasoglu, E., Ekinci, M., Kul, R. et al. (2020). Nitric oxide enhances salt tolerance through regulating antioxidant enzyme activity and nutrient uptake in pea. Legume Research 44: 41–45. doi:10.18805/LR-540.

      29 Delledonne, M. (2005). NO news is good news for plants. Current Opinion in Plant Biology 8: 390–396.

      30 Delledonne, M., Xia, Y.J., Dixon, R.A. et al. (1998). Nitric oxide functions as a signal in plant disease resistance. Nature 394: 585–588.

      31 Delledonne, M., Zeier, J., Marocco, A. et al. (2001). Signal interactions between nitric oxide and reactive oxygen intermediates in the plant hypersensitive disease resistance response. Proceedings of the National Academy of Sciences of the United States of America 98: 13454–13459.

      32 Del Pozo, O. and Lam, E. (2003). Expression of the baculovirus p35 protein in tobacco inhibits hypersensitive response cell death and compromises N gene-mediated disease resistance in response to tobacco mosaic virus. Molecular Plant–Microbe Interactions 16: 485–494.

      33 del Río, L.A., Corpas, F.J., and Barroso, J.B. (2004). Nitric oxide and nitric oxide synthase activity in plants. Phytochemistry 65: 783–792.

      34 Deng, X.G., Zhu, T., Zou, L.J. et al. (2016). Orchestration of hydrogen peroxide and nitric oxide in brassinosteroid-mediated systemic virus resistance in Nicotiana benthamiana. The Plant Journal 85: 478–493.

      35 Desikan, R., Griffiths, R., Hancock, J. et al. (2002). A new role for an old enzyme: nitrate reductase-mediated nitric oxide generation is required for abscisic acid-induced stomatal closure in Arabidopsis thaliana. Proceedings of the National Academy of Sciences of the United States of America 99: 16314–16318.

      36 de Pinto, M.C., Tomassi, F., and de Gara, L. (2002). Changes in the antioxidant systems as a part of the signaling pathway responsible for the programmed cell death activated by nitric oxide and reactive oxygen species in tobacco bright-yellow 2 cells. Plant Physiology 130: 689–708.

      37 Diaz, M., Achkor, H., Titarenko, E. et al. (2003). The gene encoding glutathione-dependent formaldehyde dehydrogenase/GSNO reductase is responsive to wounding, jasmonic acid and salicylic acid. FEBS Letters 543: 136–139.

      38 Dickmann, M.B., Park, Y.K., Oltersdorf, T. et al. (2001). Abrogation of disease development in plants expressing animal antiapoptotic genes. Proceedings of the National Academy of Sciences of the United States of America 98: 6957–6962.

      39 Dong, N., Li, Y., Qi, J. et al. (2018). Nitric oxide synthase dependent nitric oxide production enhances chilling tolerance of walnut shoots in vitro via involvement chlorophyll fluorescence and other physiological parameter levels. Scientia Horticulturae 230: 68–77.

      40 D’Silva, I., Poirier, G.G., and Heath, M.C. (1998). Activation of cysteine proteases in cowpea plants during the hypersensitive response: a form of programmed cell death. Experimental Cell Research 245: 389–399.

      41 Du, S., Liu, Y., Zhang, P. et al. (2015). Atmospheric application of trace amounts of nitric oxide enhances tolerance to salt stress and improves nutritional quality in spinach (Spinacia oleracea L.). Food Chemistry 173: 905–911. doi:10.1016/j.foodchem.2014.10.115.

      42 Durner, J. and Klessig, D.F. (1999). Nitric oxide as a signal in plants. Current Opinion in Plant Biology 2: 369–374.

      43 Durner, J., Wendehenne, D., and Klessig, D.F. (1998). Defense gene induction in tobacco by nitric oxide, cyclic GMP, and cyclic ADP ribose. Proceedings of the National Academy of Sciences of the United States of America 95: 10328–10333.

      44 Dwivedi, P., Kumari, A., and Singh, B.N. (2016). Enhanced antioxidant system re-programmes oxidative stress through hypersensitive response in leaves of rice plant challenged with Aspergillus species. International Journal of Agriculture, Environment and Biotechnology 9 (2): 201–208.

      45 Ederli, L., Bianchet, C., Paolocci, F. et al. (2019). Drought stress induces a biphasic NO accumulation in Arabidopsis thaliana. Plant Signaling and Behavior 14 (3): e1573098. doi:10.1080/15592324.2019.1573098.

      46 Ederli, L., Morettini, R., Borgogni, A. et al. (2006). Interaction between nitric oxide and ethylene in the induction of alternative oxidase in ozone-treated tobacco plants. Plant Physiology 142: 595e608. doi:10.1104/pp.106.085472.

      47 Fan, H., Guo, S., Jiao, Y. et al. (2007). Effects of exogenous nitric oxide on growth, active oxygen species metabolism, and photosynthetic characteristics in cucumber seedlings under NaCl stress. Frontiers of Agriculture in China 1: 308–314.doi:10.1007/s11703-007-0052-5.

      48 Fan, H.F., Du, C.X., and Guo, S.R. (2013). Nitric oxide enhances salt tolerance in cucumber seedlings by regulating free polyamine content. Environmental and Experimental Botany 86: 52–59. doi:10.1016/j.envexpbot.2010.09.007.

      49 Feechan, A., Kwon, E., Yun, B.W. et al. (2005). A central role for S-nitrosothiols in plant disease resistance. PNAS 102: 8054–8059.

      50 Ferrer, M.A. and Ros-Barcelo, A. (1999). Differential effects of nitric oxide on peroxidase and H2O2 production by the xylem of Zinnia elegans. Plant, Cell and Environment 22: 891–897.

      51 Filippou, P., Bouchagier, P., Skotti, E., and Fotopoulos, V. (2014). Proline and reactive oxygen/nitrogen species metabolism is involved in the tolerant response