Группа авторов

Industry 4.0 Vision for the Supply of Energy and Materials


Скачать книгу

Conference on Electronic Commerce, ICEC’04, 1–10, New York, NY. Association for Computing Machinery.

      30 30 Equipment for Potentially Explosive Atmospheres (ATEX). https://ec.europa.eu/growth/sectors/mechanical-engineering/atex_en.

      31 31 National Electrical Code@. National Fire Protection Association- NFPA 70@. https://www.nfpa.org/codes-and-standards/all-codes-and-standards/list-of-codes-and-standards/detail?code=70.

      32 32 Bajracharya, R., Shrestha, R., Zikria, Y.B., and Kim, S.W. (2018). LTE in the unlicensed spectrum: A survey. IETE Tech. Rev. 35 (1): 78–90.

      33 33 3GPP. (2015). Feasibility study on licensed-assisted access to unlicensed spectrum (Release 13). TR 36.889, 3rd Generation Partnership Project (3GPP). https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=2579.

      34 34 Nadas, J.P.B., Zhao, G., Souza, R.D., and Muhammad, A.I. (2020). Ultra reliable low latency communications as an enabler for industry automation. In: Wireless Automation as an Enabler for the Next Industrial Revolution (ed. S. Hussain, M.A. Imran, and Q.H. Abbasi), 89–107. John Wiley & Sons, Ltd.

      35 35 Karaki, R., Cheng, J., Obregon, E., Mukherjee, A., Kang, D.H., Falahati, S., Koorapaty, H., and Drugge, O. (2017). Uplink Performance of Enhanced Licensed Assisted Access (eLAA) in Unlicensed Spectrum. In 2017 IEEE Wireless Communications and Networking Conference (WCNC), 1–6.

      36 36 Bajracharya, R., Shrestha, R., and Jung, H. (May 2020). Future is unlicensed: Private 5G unlicensed network for connecting industries of future. Sensors 20 (10): 2774.

      37 37 Lu, X., Petrov, V., Moltchanov, D., Andreev, S., Mahmoodi, T., and Dohler, M. (2019). 5G-U: Conceptualizing integrated utilization of licensed and unlicensed spectrum for future IoT. IEEE Commun. Mag. 57 (7): 92–98.

      38 38 Tombaz, S., Frenger, P., Athley, F., Semaan, E., Tidestav, C., and Fu- Ruskar, A. (2015). Energy Performance of 5G-NX Wireless Access Utilizing Massive Beamforming and an Ultra-Lean System Design. In 2015 IEEE Global Communications Conference (GLOBECOM), 1–7.

      39 39 Torsner, J., Dovstam, K., Miklos, G., Skubic, B., Mildh, G., Mecklin, T., Sandberg, J., Nyqvist, J., Neander, J., Martinez, C., Zhang, B., and Wan, J. (Nov 2015). Industrial Remote Operation: 5G Rises to the Challenge. Ericsson Technology Review. https://www.ericsson.com/en/reports-and-papers/ericsson-technology-review/articles/industrial-remote-operation-5g-rises-to-the-challenge.

      40 40 Sahlli, E., Ismail, M., Nordin, R., and Abdulah, N. (Jun 2017). Beamforming techniques for massive MIMO systems in 5G: Overview, classification, and trends for future research. Front. Inf. Technol. Electron. Eng. 18: 753–772.

      41 41 Anandhi, S., Anitha, R., and Sureshkumar, V. (2019). IoT enabled RFID Authentication and secure object tracking system for smart logistics. Wirel. Pers. Commun. 104 (2): 543–560.

      42 42 Growindhager, B., Stocker, M., Rath, M., Boano, C.A., and Romer, K. (2019). SnapLoc: an Ultra-Fast UWB-Based Indoor Localization System for an Unlimited Number of Tags. In: 2019 18th ACM/IEEE International Conference on Information Processing in Sensor Networks (IPSN), 61–72.

      43 43 Lee, C.K.M., Ip, C.M., Park, T., and Chung, S.Y. (2019). A Bluetooth Location- Based Indoor Positioning System for Asset Tracking in Warehouse. In: 2019 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM), 1408–1412.

      44 44 Thales. Asset Tracking. https://www.thalesgroup.com/en/markets/digital-identity-and-security/iot/industries/asset-tracking.

      45 45 Frotzscher, A., Wetzker, U., Bauer, M., Rentschler, M., Beyer, M., Elspass, S., and Klessig, H. (2014). Requirements and Current Solutions of Wireless Communication in Industrial Automation. In: 2014 IEEE International Conference on Communications Workshops (ICC), 67–72.

      46 46 PROFIBUS & PROFINET International (PI). (Apr 2016). PROFISafe. https://www.profibus-profinet.cz/images/Dokumenty/PROFINET/2812_PROFIsafe_SystemDescription_ENG__2016_web.pdf.

      47 47 ODVA. CIP Safety™—common Industrial Protocol. ODVA, Inc. (Open DeviceNet Vendors Association). https://www.odvaorg/technology-standards/distinct-cip-services/cip-safety/.

      48 48 Davis, J. (Dec 2008). Top Five Selection Criteria for Industrial Wireless Technologies. Cypress Semiconductor Corp. https://www.eetimes.com/top-five-selection-criteria-for-industrial-wireless-technologies/#.

      49 49 Seferagic, A., Famaey, J., Eli, D.P., and Hoebeke, J. (Jan 2020). Survey on wireless technology trade-offs for the industrial Internet of things. Sensors 20 (2): 488.

      50 50 Zhu, J., Zou, Y., and Zheng, B. (2017). Physical-layer security and reliability challenges for industrial wireless sensor networks. IEEE Access 5: 5313–5320.

      51 51 Rao, S.K. and Prasad, R. (May 2018 ). Impact of 5G technologies on industry 4.0. Wirel. Pers. Commun. 100 (1): 145–159.

      52 52 Park, P., Fischione, C., Bonivento, A., Johansson, K.H., and Sangiovanni-Vincent, A. (2011). Breath: An adaptive protocol for industrial control applications using wireless sensor networks. IEEE Trans. Mob. Comput. 10 (6): 821–838.

      53 53 Porter, M.E. and Heppelmann, J.E. (Nov 2014). How smart, connected products are transforming competition. Harvard Business Review. https://hbr.org/2014/11/how-smart-connected-products-are-transforming-competition.

      54