Alexander Peiffer

Vibroacoustic Simulation


Скачать книгу

is shown in Figures 1.6 and 1.7 for different ζ. One can see the resonance amplification at ωr that would be infinite in case of ζ = 0 and the decrease of the amplitude with increasing damping. For ζ>1/2 the maximum value occurs at ω = 0, so the displacement is just a forced movement without any resonance effect.

      Figure 1.6 Normalized amplitude of forced harmonic oscillator. Source: Alexander Peiffer.

      Figure 1.7 Phase of forced harmonic oscillator. Source: Alexander Peiffer.

      The frequency of highest amplitude is called the amplitude resonance and it is different from the so called phase resonance with ϕ=−π2, which corresponds to the resonance of the undamped oscillator.

      1.2.2 Energy, Power and Impedance

       StartLayout 1st Row 1st Column upper E Subscript kin Baseline plus upper E Subscript pot 2nd Column equals one-half m ModifyingAbove u With dot squared plus one-half k Subscript s Baseline u squared 2nd Row 1st Column Blank 2nd Column equals one-half m omega squared ModifyingAbove u With caret squared sine squared left-parenthesis omega t right-parenthesis plus one-half k Subscript s Baseline ModifyingAbove u With caret cosine squared left-parenthesis omega t right-parenthesis 3rd Row 1st Column Blank 2nd Column equals one-half m omega squared ModifyingAbove u With caret squared left-bracket sine squared left-parenthesis omega t right-parenthesis plus cosine squared left-parenthesis omega t right-parenthesis right-bracket equals one-half m omega squared ModifyingAbove u With caret squared EndLayout (1.36)

      and is constant, but spring and mass exchange energy twice over one period T0.

      Figure 1.8 Kinetic and potential energy of the harmonic oscillator. Source: Alexander Peiffer.

       StartLayout 1st Row 1st Column u Subscript ms Superscript 2 Baseline equals mathematical left-angle u squared mathematical right-angle Subscript upper T Baseline 2nd Column equals StartFraction 1 Over upper T EndFraction integral Subscript 0 Superscript upper T Baseline u squared left-parenthesis t right-parenthesis d t 3rd Column u Subscript rms Baseline equals StartRoot mathematical left-angle u squared mathematical right-angle Subscript upper T Baseline EndRoot EndLayout (1.37)

      In the following ⟨⋅⟩T=1T∫0T⋅dt denotes a time average. If the signal is harmonic with u(t)=u^cos⁡(ω0t) then

       StartLayout 1st Row 1st Column u Subscript rms 2nd Column equals StartFraction ModifyingAbove u With caret Over StartRoot 2 EndRoot EndFraction 3rd Column u Subscript rms Superscript 2 4th Column equals StartFraction ModifyingAbove u With caret squared Over 2 EndFraction 5th Column Blank EndLayout (1.38)

      1.2.3 Impedance and Response Functions

      So far the frequency response of the oscillator was expressed as the relationship between displacement and force. The ratios u/Fx and D=Fx/u are called mechanical receptance and, respectively. Often used force response relationships are the mechanical impedance impedance ! mechanical (force/velocity=Fx/vx) and the mobility (velocity/force=vx/Fx). The symbols and definitions are:

       Impedance colon bold-italic upper Z equals StartFraction bold-italic upper F Subscript x Baseline Over bold-italic v Subscript x Baseline EndFraction Mobility colon bold-italic upper Y equals StartFraction bold-italic v Subscript x Baseline Over bold-italic upper F Subscript x Baseline EndFraction (1.39)

      Considering the solution of the damped oscillator and vx=jωu both quantities become:

      The real and imaginary part have specific names resistance reactance

       bold-italic upper Z equals upper R plus j upper X Subscript normal upper Z Baseline resistance plus j reactance (1.41)

      Figure 1.9 Magnitude and phase of oscillator impedance. Source: Alexander Peiffer.

      1.2.3.1 Power Balance

      We multiply Equation (1.23) by u˙

      The first and third term can be integrated

       StartFraction d Over d t EndFraction left-parenthesis one-half m ModifyingAbove u With dot squared plus one-half k Subscript s Baseline u squared right-parenthesis plus c Subscript v Baseline ModifyingAbove u With dot squared equals upper F Subscript x Baseline ModifyingAbove u With dot period (1.43)

      The terms in the parenthesis are kinetic and potential energy and known as constant. The expression cvu˙2 is the dissipated power, because it is the damping force times velocity.

       normal upper Pi Subscript diss Baseline equals upper F Subscript x Baseline ModifyingAbove u With dot equals c Subscript v Baseline ModifyingAbove u With dot squared (1.44)

      And Fxu˙ is the introduced power,