Группа авторов

The Science of Reading


Скачать книгу

models it inspired are computational versions of the box‐and‐arrow approach. As before, the goal is to account for as many phenomena as possible. The “gold standard” studies function like the brain‐injured patients with highly selective impairments. The parameter settings that allowed an effect to be reproduced had no independent justification, nor do the detailed assumptions about the sequence of events in generating a pronunciation or making a lexical decision. The goal of the connectionist approach, in contrast, was to identify general properties of knowledge representation, learning, and processing which, when applied in domains such as reading aloud or generating the past tense, would yield behavior that aligned well with people’s. The properties that were identified have turned out to have lasting value, yielding novel insights about old questions and opening new ones for scientific study.

      At the outset we observed that “Visual word recognition is one of the great success stories in modern cognitive science and neuroscience.” Is the claim valid? All of the models we have discussed address a limited range of reading phenomena. The goal of implementing models that simulate the results of individual studies may well have been over‐ambitious; behavior is affected by factors outside the scope of such models (e.g., measurement and sampling error). Many issues, such as the roles of different types of learning, remain to be addressed. Pursuit of the two types of models has nonetheless deepened understanding of many aspects of reading, including ones discussed elsewhere in this volume. The high level of convergence between theories that has occurred is itself indicative of progress in this vigorous area of research.

      This work was supported by The Vilas Trust and Deinlein Language and Literacy Fund (University of Wisconsin‐Madison). We have greatly benefited from discussions of these issues with many people over the years, especially David Plaut, Anna Woollams, Karalyn Patterson, Jay McClelland, Matt Lambon Ralph, and Maryellen MacDonald. Details concerning the modeling results mentioned in the article are available on the Open Science Framework website, https://osf.io/ay7h6/.

      1 Allen, J., & Seidenberg, M.S. (1999). Grammaticality judgment and aphasia: A connectionist account. In B. MacWhinney (Ed.), The Emergence of Language (pp. 115–151). Erlbaum.Anderson, J. R. (1983). The architecture of cognition. Lawrence Erlbaum Associates, Inc.

      2 Andrews, S., & Scarratt, D. R. (1998). Rule and analogy mechanisms in reading nonwords: Hough dou peapel rede gnew wirds? Journal of Experimental Psychology: Human Perception and Performance, 24(4), 1052–1086. doi: 10.1037/0096‐1523.24.4.1052.

      3 Backman, J., Bruck, M., Hebert, M., & Seidenberg, M. S. (1984). Acquisition and use of spelling‐sound information in reading. Journal of Experimental Child Psychology, 38(1), 114–113. doi: 10.1016/0022‐0965(84)90022‐5.

      4 Balota, D. A., Yap, M. J., Hutchison, K. A., Cortese, M. J., Kessler, B., Loftis, B., Neely, J. H., Nelson, D. L., Simpson, G. B., & Treiman, R. (2007). The English lexicon project. Behavior Research Methods, 39(3), 445–459. doi: 10.3758/bf03193014.

      5 Baron, J. & Strawson, C. (1976). Use of orthographic and word‐specific knowledge in reading words aloud. Journal of Experimental Psychology: Human Perception and Performance, 2(3), 386–393. doi: 10.1037/0096‐1523.2.3.386.

      6 Barton, J. J., Hanif, H. M., Eklinder Björnström, L., & Hills, C. (2014). The word‐length effect in reading: A review. Cognitive Neuropsychology, 31(5–6), 378–412. doi: 10.1080/02643294.2014.895314.

      7 Berko, J. (1958). The child's learning of English morphology. Word, 14(2–3), 150–177.

      8 Bouhali, F., Bézagu, Z., Dehaene, S., & Cohen, L. (2019). A mesial‐to‐lateral dissociation for orthographic processing in the visual cortex. Proceedings of the National Academy of Sciences, 116(43), 21936–21946. doi: 10.1073/pnas.1904184116.

      9 Chang, Y. N., Taylor, J. S., Rastle, K., & Monaghan, P. (2020). The relationships between oral language and reading instruction: Evidence from a computational model of reading. Cognitive Psychology, 123, 101336. doi: 10.1016/j.cogpsych.2020.101336.

      10 Chee, Q. W., Chow, K. J., Yap, M. J., & Goh, W. D. (2020). Consistency norms for 37,677 English words. Behavior Research Methods, 52, 2535–2555. 10.3758/s13428‐020‐01391‐7.

      11 Chen, L., Ralph, M. A. L., & Rogers, T. T. (2017). A unified model of human semantic knowledge and its disorders. Nature Human Behaviour, 1(3), 1–10. doi: 10.1038/s41562‐016‐0039.

      12 Clark S. (2015). Vector space models of lexical meaning. In S. Lappin & C. Fox (Eds.), The handbook of contemporary semantic theory (pp. 493–522). Wiley. doi: 10.1002/9781118882139.CH16.

      13 Cohen‐Shikora, E. R., & Balota, D. A. (2016). Visual word recognition across the adult lifespan. Psychology and Aging, 31(5), 488–502. doi: 10.1037/pag0000100.

      14 Coltheart, M. (1978). Lexical access in simple reading tasks. In G. Underwood (Ed.), Strategies of Information Processing (pp. 151–216). Academic Press.

      15 Coltheart, M. (2005). Modeling reading: The dual‐route approach. In M. J. Snowling & C. E. Hulme (Eds.), The science of reading: A handbook (pp. 6–23). Blackwell. doi: 10.1002/9780470757642.ch1

      16 Coltheart, M. (2006). Acquired dyslexias and the computational modelling of reading. Cognitive Neuropsychology, 23(1), 96–109. doi: 10.1080/02643290500202649.

      17 Coltheart, M., Curtis, B., Atkins, P., & Haller, M. (1993). Models of reading aloud: Dual‐route and parallel‐distributed‐processing approaches. Psychological Review, 100(4), 589–608. doi: 10.1037/0033‐295X.100.4.589.

      18 Coltheart, M., Rastle, K., Perry, C., Langdon, R., & Ziegler, J. (2001). DRC: A dual route cascaded model of visual word recognition and reading aloud. Psychological Review, 108(1), 204–256. doi: 10.1037/0033‐295x.108.1.204.

      19 Coltheart, V., & Leahy, J. (1992). Children's and adults' reading of nonwords: Effects of regularity and consistency. Journal of Experimental Psychology: Learning, Memory, and Cognition, 18(4), 718–729. doi: 10.1037//0278‐7393.18.4.718.

      20 Cortese, M. J., & Simpson, G. B. (2000). Regularity effects in word naming: What are they? Memory & Cognition, 28(8), 1269–1276. doi: 10.3758/bf03211827.

      21 Cosky, M. J. (1976). The role of letter recognition in word recognition. Memory & Cognition, 4(2), 207–214. doi: 10.3758/BF03213165.

      22 Cox, C. R., Seidenberg, M. S., & Rogers, T. T. (2015). Connecting functional brain imaging and Parallel Distributed Processing, Language, Cognition and Neuroscience, 30, 380–394. doi: 10.1080/23273798.2014.994010.

      23 Ellis, R. (2005). Principles of instructed language learning. System, 33(2), 209–224. doi: 10.1016/j.system.2004.12.006.

      24 Evans, G. A., Ralph, M. A. L., & Woollams, A. M. (2012). What’s in a word? A parametric study of semantic influences on visual word recognition. Psychonomic Bulletin and Review, 19(2), 325–331. doi: 10.3758/s13423‐011‐0213‐7.

      25 Foorman, B. R., Francis, D. J., Novy, D. M., & Liberman, D. (1991). How letter‐sound instruction mediates progress in first‐grade reading and spelling. Journal of Educational Psychology, 83, 456–459. doi: 10.1037/0022‐0663.83.4.456.

      26 Forster, K. I., & Chambers, S. M. (1973). Lexical access and naming time. Journal of Verbal Learning and Verbal Behavior, 12(6), 627–635. doi: 10.1016/S0022‐5371(73)80042‐8.

      27 Frederiksen, J. R., & Kroll, J. F. (1976). Spelling and sound: Approaches to the internal lexicon. Journal of Experimental Psychology: Human Perception and Performance, 2(3), 361–379. doi: 10.1037/0096‐1523.2.3.361.

      28 Frost, S. J., Mencl, W. E., Sandak, R., Moore, D. L., Rueckl, J. G., Katz, L., Fulbright, R. K., & Pugh, K. R. (2005). A functional magnetic resonance imaging study of the tradeoff between semantics and phonology in reading aloud. Neuroreport, 16(6), 621–624.