& Visual Science, 43, 1270–1276. doi: 10.1167/7.2.2.
17 Chung, S.T., Mansfield, J. S., & Legge, G. E. (1998). Psychophysics of reading. XVIII: The effect of print size on reading speed in normal peripheral vision. Vision Research, 38, 2949–2962. doi: 10.1016/s0042‐6989(98)00072‐8.
18 Clark, J. J., & O'Regan, J. K. (1999). Word ambiguity and the optimal viewing position in reading. Vision Research, 39, 843–857. doi: 10.1016/s0042‐6989(98)00203‐x.
19 Cohen, L., Dehaene, S., Naccache, L., Lehe’ricy, S., Dehaene‐Lambertz, G., He’naff, M. A., & Michel, F. (2000). The visual word form area: Spatial and temporal characterization of an initial stage of reading in normal subjects and posterior split‐brain patients. Brain, 123, 291–307. doi: 10.1093/brain/123.2.291.
20 Coltheart, M., Davelaar, E., Jonasson, J. F., & Besner, D. (1977). Access to the internal lexicon. In S. Dornic (Ed.), Attention & performance VI (pp. 535–555). Hillsdale, NJ: Erlbaum. doi: 10.1080/14640747908400741.
21 Coltheart, M., Rastle, K., Perry, C., Langdon, R., & Ziegler, J.C. (2001). DRC: A dual‐route cascaded model of visual word recognition and reading aloud. Psychological Review, 108, 204–256. doi: 10.1037/0033‐295x.108.1.204.
22 Dare, N., & Shillcock, R. (2013). Serial and parallel processing in reading: Investigating the effects of parafoveal orthographic information on nonisolated word recognition. The Quarterly Journal of Experimental Psychology, 66, 417–428. doi: 10.1080/17470218.2012.703212.
23 Davis, C. J. (2010). The spatial coding model of visual word recognition. Psychological Review, 117, 713–758. doi: 10.1037/a0019738.
24 Davis, C. J., & Lupker, S. (2006). Masked inhibitory priming in English: Evidence for lexical inhibition. Journal of Experimental Psychology: Human Perception and Performance, 32, 668–687. doi: 10.1037/0096‐1523.32.3.668.
25 Decklerck, M., Wen, Y., Snell, J., Meade, G., & Grainger, J. (2020). Unified syntax in the bilingual mind. Psychonomic Bulletin and Review, 27, 149–154. doi: 10.3758/s13423‐019‐01666‐x.
26 Dehaene, S., Cohen, L., Sigman, M., & Vinckier, F. (2005). The neural code for written words: A proposal. Trends in Cognitive Sciences, 9, 335–341. doi: 10.1016/j.tics.2005.05.004.
27 De Moor, W., & Brysbaert, M. (2000). Neighborhood‐frequency effects when primes and targets are of different lengths. Psychological Research, 63, 159–162. doi: 10.1007/pl00008174.
28 Deutsch, A., & Rayner, K. (1999). Initial fixation location effects in reading Hebrew words. Language and Cognitive Processes, 14, 393–421. doi: 10.1080/016909699386284.
29 Diependaele, K., Ziegler, J., & Grainger, J. (2010). Fast phonology and the bi‐modal interactive activation model. European Journal of Cognitive Psychology, 22, 764–778. doi: 10.1080/09541440902834782.
30 Ducrot, S., & Grainger, J. (2007). Deployment of spatial attention to words in central and peripheral vision. Perception & Psychophysics, 69, 578–590. doi: 10.3758/bf03193915.
31 Ducrot, S., & Pynte, J. (2002). What determines the eyes' landing position in words? Perception & Psychophysics, 64, 1130–1144. doi: 10.3758/bf03194762.
32 Eriksen, C. W. (1995). The flankers task and response competition: A useful tool for investigating a variety of cognitive problems. Visual Cognition, 2, 101–118. doi: 10.1080/13506289508401726.
33 Farid, M., & Grainger, J. (1996). How initial fixation position influences word recognition: A comparison of French and Arabic. Brain & Language, 53, 351–368. doi: 10.1006/brln.1996.0053.
34 Ferrand, L., Méot, A., Spinelli, E., New, B., Pallier, C., Bonin, P., Dufau, S., Mathôt, S., & Grainger, J. (2018). Megalex: A megastudy of visual and auditory word recognition. Behavior Research Methods, 50, 1285–1307. doi: 10.3758/s13428‐017‐0943‐1.
35 Fiset, D., Blais, C., Ethier‐Majcher, C., Arguin, M., Bub, D., & Gosselin, F. (2008). Features for identification of uppercase and lowercase letters. Psychological Science, 19, 1161–1168. doi: 10.1111/j.1467‐9280.2008.02218.x.
36 Forster, K. I. & Davis, C. (1984). Repetition priming and frequency attenuation in lexical access. Journal of Experimental Psychology: Learning, Memory, and Cognition, 10, 680–698. doi: 10.1037/0278‐7393.10.4.680.
37 Forster, K. I., & Davis, C. (1991). The density constraint on form‐priming in the naming task: Interference effects from a masked prime. Journal of Memory and Language, 30, 1–25. doi: 10.1016/0749‐596X(91)90008‐8.
38 Forster, K. I., & Taft, M. (1994). Bodies, antibodies, and neighborhood‐density effects in masked form priming. Journal of Experimental Psychology: Learning, Memory, and Cognition, 20, 844–863. doi: 10.1037//0278‐7393.20.4.844.
39 Gil‐López, C., Perea, M., Moret‐Tatay, C., & Carreiras, M. (2011). Can masked priming effects be obtained with handwritten words? Attention, Perception, & Psychophysics, 73, 1643–1649. doi: 10.3758/s13414‐011‐0174‐y.
40 Gomez, P., Ratcliff, R., & Perea, M. (2008). The overlap model: A model of letter position coding. Psychological Review, 115, 577–601. doi: 10.1037/a0012667.
41 Grainger, J. (2018). Orthographic processing: A “mid‐level” vision of reading. Quarterly Journal of Experimental Psychology, 71, 335–359. doi: 10.1080/17470218.2017.1314515.
42 Grainger, J., Dufau, S., & Ziegler, J.C. (2016). A vision of reading. Trends in Cognitive Sciences, 20, 171–179. doi: 10.1016/j.tics.2015.12.008.
43 Grainger, J., Granier, J.P., Farioli, F., Van Assche, E., & van Heuven, W. (2006). Letter position information and printed word perception: The relative‐position priming constraint. Journal of Experimental Psychology: Human Perception and Performance, 32, 865–884. doi: 10.1037/0096‐1523.32.4.865.
44 Grainger, J. & Holcomb, P.J. (2009). Watching the word go by: On the time‐course of component processes in visual word recognition. Language and Linguistics Compass, 3, 128–156. doi: 10.1111/j.1749‐818X.2008.00121.x.
45 Grainger, J., & Jacobs, A. M. (1993). Masked partial‐word priming in visual word recognition: Effects of positional letter frequency. Journal of experimental psychology: human perception and performance, 19, 951. doi: 10.1037//0096‐1523.19.5.951.
46 Grainger, J. & Jacobs, A.M. (1996). Orthographic processing in visual word recognition: A multiple read‐out model. Psychological Review, 103, 518–565. doi: 10.1037/0033‐295x.103.3.518.
47 Grainger, J., Mathôt, S., Vitu, F. (2014). Tests of a model of multi‐word reading: Effects of parafoveal flanking letters on foveal word recognition. Acta Psychologica, 146, 35–40. doi: 10.1016/j.actpsy.2013.11.014.
48 Grainger, J., Rey, A., & Dufau, S. (2008). Letter perception: from pixels to pandemonium! Trends in Cognitive Sciences, 12, 381–387. doi: 10.1016/j.tics.2008.06.006.
49 Grainger, J. & van Heuven, W. (2004). Modeling letter position coding in printed word perception. In P. Bonin (Ed.), The mental lexicon. New York: Nova Science Publishers (pp. 1–24).
50 Hannagan, T., Ktori, M., Chanceaux, M., & Grainger, J. (2012). Deciphering CAPTCHAs: What a Turing test reveals about human cognition. PLoS ONE, 7(3), e32121. doi: 10.1371/journal.pone.0032121.
51 Heilbron, M., Richter, D., Ekman, M., Hagoort, P., & de Lange, F.P. (2020). Word contexts enhance the neural representation of individual letters in early visual cortex. Nature Communications, in press. doi: 10.1038/s41467‐019‐13996‐4.
52 Humphreys, G. W., Evett, L. J., & Quinlan, P. T. (1990). Orthographic processing in visual word identification. Cognitive Psychology, 22, 517–560. doi: 10.1016/0010‐0285(90)90012‐s.
53 Jacobs, A.M. & Grainger, J. (1991). Automatic letter priming in an alphabetic decision task. Perception & Psychophysics, 49, 43–52. doi: 10.3758/bf03211615.
54 Keuleers, E., Lacey, P., Rastle, K., & Brysbaert, M. (2012). The British Lexicon Project: Lexical decision data for 28,730 monosyllabic