Группа авторов

The Digital Agricultural Revolution


Скачать книгу

Thotlavalluru 6624.00 6485.03 2.098 8 Avanigada 5453.76 5374.90 1.446 9 Pamidimukkala 8765.76 8352.45 4.715 10 Guduru 8964.48 8513.84 5.027 11 Penamaluru 6853.62 6931.55 -1.137 12 Koduru 8854.08 8403.05 5.094 13 Pamarru 8589.12 9081.36 -5.731 14 Machilipatnam 8824.32 8582.00 2.746 15 Pedana 8311.36 7798.88 6.166 16 Mopidevi 6586.24 6354.08 3.525 17 Nagayalanka 7904.64 7890.10 0.184

Training Testing
Year RMSE R ratio MAE R2 RMSE R ratio MAE R2
Paddy (Kharif) 0.117 1.063 0.095 0.946 0.108 1.065 0.085 0.936
Paddy (Rabi) 0.125 0.987 0.108 0.967 0.317 0.620 0.178 0.950
Sugarcane 0.150 1.006 0.119 0.916 0.184 0.556 0.143 0.924
Graph depicts the scatter plots of actual and FFBP NN model predicted yield of sugarcane during 2015.

      There was an underestimation of yield in some cases of cane yield prediction. Although there was a deviation in crop yield prediction in few observations, the overall accuracy of the model