molecular and medical phenotypes. Cell, 148, 1293–1307, 2012.
6. Fernald, G.H., Capriotti, E., Daneshjou, R., Karczewski, K.J., Altman, R.B., Bioinformatics challenges for personalized medicine. Bioinformatics, 27, 13, 1741–1748, 2011.
7. Cvach, M., Monitor alarm fatigue: An integrative review. Biomed. Instrum. Technol., 46, 4, 268–277, 2012.
8. Drew, B.J., Harris, P., Z`egre-Hemsey, J.K., Mammone, T., Schindler, D., Salas-Boni, R., Bai, Y., Tinoco, A., Ding, Q. and Hu, X., Insights into the problem of alarm fatigue with physiologic monitor devices: A comprehensive observational study of consecutive intensive care unit patients. PloS One, 9, 10, e110274, 2014.
9. Graham, K.C. and Cvach, N., Monitor alarm fatigue: Standardizing use of physiological monitors and decreasing nuisance alarms. Am. J. Crit. Care, 19, 1, 28–34, 2010.
10. Rothschild, J.M., Landrigan, C.P., Cronin, J.W., Kaushal, R., Lockley, S.W., Burdick, E., Stone, P.H., Lilly, C.M., Katz, J.T., Czeisler, C.A. et al., The critical care safety study: The incidence and nature of adverse events and serious medical errors in intensive care. Read Online: Crit. Care Med.—Soc. Crit. Care Med., 33, 8, 1694–1700, 2005.
11. Carayon, P. and G¨urses, A.P., A human factors engineering conceptual framework of nursing workload and patient safety in intensive care units. Intensive Crit. Care Nurs., 21, 5, 284–301, 2005.
12. Carayon, P., Human factors of complex sociotechnical systems. Appl. Ergon., 37, 4, 525–535, 2006.
13. Baxter, J.S.H., Gibson, E., Eagleson, R., Peters, T.M., The semiotics of medical image segmentation. Med. Image Anal., 44, 54–71, 2018.
14. Seibert, J.A., Modalities and data acquisition, in: Practical Imaging Informatics, pp. 49–66, Springer, New York, 2009.
15. Oyelade, J., Soyemi, J., Isewon, I., and Obembe, O., Bioinformatics, healthcare informatics and analytics: An imperative for improved healthcare system. Int. J. Appl. Inf. Syst., 13, 5, 1–6, 2015.
16. Kannampallil, T.G., Franklin, A., Cohen, T., Buchman, T.G., Sub-optimal patterns of information use: A rational analysis of information seeking behavior in critical care, in: Cognitive Informatics in Health and Biomedicine, pp. 389–408, Springer, London, 2014.
17. DCC AOCNP, The evolution of the electronic health record. Clin. J. Oncol. Nurs., 19, 2, 153, 2015.
18. Gillum, R.F., From papyrus to the electronic tablet: A brief history of the clinical medical record with lessons for the digital age. Am. J. Med., 126, 10, 853–857, 2013.
19. Reiser, S.J., The clinical record in medicine part 1: Learning from cases. Ann. Intern. Med., 114, 10, 902–907, 1991.
20. Wu, P.-Y., Cheng, C.-W., Kaddi, C.D., Venugopalan, J., Hoffman, R., Wang, M.D., -omic and electronic health record big data analytics for precision medicine. IEEE Trans. Biomed. Eng., 64, 2, 263–273, 2016.
21. Luo, J., Wu, M., Gopukumar, D., Zhao, Y., Big data application in biomedical research and healthcare: A literature review. Biomed. Inform. Insights, 8, BII–S31559, 2016.
22. Archenaa, J. and Anita, E.A.M., A survey of big data analytics in healthcare and government. Proc. Comput. Sci., 50, 408–413, 2015.
23. Viceconti, M. and Hunter, P., and Hose, R., Big data, big knowledge: Big data for personalized healthcare. IEEE J. Biomed. Health Inform., 19, 4, 1209–1215, 2015.
1 *Email: [email protected]
Конец ознакомительного фрагмента.
Текст предоставлен ООО «ЛитРес».
Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес.
Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.