Сергей Обложко

Худеем по метаболическому принципу


Скачать книгу

человека». В 1984 году появилась новая формула вычисления базального метаболизма, скорректированная с учетом возраста (Roza AM, Shizgal HM, 1984).

/9j/7gAOQWRvYmUAZAAAAAAA/9sAQwANCQoLCggNCwoLDg4NDxMgFRMSEhMnHB4XIC4pMTAuKS0sMzpKPjM2RjcsLUBXQUZMTlJTUjI+WmFaUGBKUVJP/8AAEQgAyADIA1IRAEcRAEIRAP/EABwAAAIDAQEBAQAAAAAAAAAAAAAGBAUHAwIBCP/EAFAQAAEDAwICBAkGCwUHAwUAAAECAwQABREGEhMhBxQxQRUXIlFhcZOy0RYjNTZUVTJScnN0gZGUobHSMzeSweIkJUJidYTCJzRHZYOForP/2gAMA1IARwBCAAA/ANOrTq06iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiod1ucSzwFzp7hbYbIClBJVjJwOQ9JqHdbnEs8Bc6e4W2GyApQSVYycDkPSah3W5xLPAXOnuFthsgKUElWMnA5D0mqDxi6X+3uewX8KoPGLpf7e57Bfwqg8Yul/t7nsF/Cjxi6X+3uewX8KPGLpf7e57Bfwo8Yul/t7nsF/Cjxi6X+3uewX8KPGLpf7e57Bfwo8Yul/t7nsF/Cjxi6X+3uewX8KPGLpf7e57Bfwo8Yul/t7nsF/CriyX+235p1y2PKdS0oJWShScE+sVcWS/22/NOuWx5TqWlBKyUKTgn1iriyX+235p1y2PKdS0oJWShScE+sVFY1fZJF58EtSlGZxVNbOEoDcnORnGO41FY1fZJF58EtSlGZxVNbOEoDcnORnGO41FY1fZJF58EtSlGZxVNbOEoDcnORnGO41e1e1e1RI1fZHL0bQmUszA6WdnCVjcDgjOMd1USNX2Ry9G0JlLMwOlnZwlY3A4IzjHdVEjV9kcvRtCZSzMDpZ2cJWNwOCM4x3Ve1e1e1wnS2IEJ6XKUUssoK1qAJwB6BXCdLYgQnpcpRSyygrWoAnAHoFcJ0tiBCelylFLLKCtagCcAegUt+MXS/29z2C/hS34xdL/AG9z2C/hS34xdL/b3PYL+FXqLvCcspu6XSYYaL2/Yc7R2nHb3Veou8Jyym7pdJhhovb9hztHacdvdV6i7wnLKbul0mGGi9v2HO0dpx291RrHqW039byLXIU6pkAry2pOM9naPRUax6ltN/W8i1yFOqZAK8tqTjPZ2j0VGsepbTf1vItchTqmQCvLak4z2do9FW9W9W9Vl7v9tsLTTlzeU0l1RSghClZI9Qqsvd/tthaacubymkuqKUEIUrJHqFVl7v8AbbC005c3lNJdUUoIQpWSPUKp/GLpf7e57Bfwqn8Yul/t7nsF/Cqfxi6X+3uewX8KPGLpf7e57Bfwo8Yul/t7nsF/Cjxi6X+3uewX8KPGLpf7e57Bfwo8Yul/t7nsF/Cjxi6X+3uewX8KPGLpf7e57Bfwo8Yul/t7nsF/Cjxi6X+3uewX8Kv7Vc4l4gInQHC4w4SEqKSnODg8j6RV/arnEvEBE6A4XGHCQlRSU5wcHkfSKv7Vc4l4gInQHC4w4SEqKSnODg8j6RUyplTKKKKKKKKKKVOk36kTPy2/fFKnSb9SJn5bfvilTpN+pEz8tv3xSNoXRcDUtrflS5MlpbT3DAaKcEbQe8Hz0jaF0XA1La35UuTJaW09wwGinBG0HvB89I2hdFwNS2t+VLkyWltPcMBopwRtB7wfPTL4qbP9vn/tR/TTL4qbP9vn/tR/TTL4qbP9vn/tR/TR4qbP9vn/ALUf00eKmz/b5/7Uf00eKmz/AG+f+1H9NVOqejy2WXTsu4x5ctbjASUpWU4OVAc8D01U6p6PLZZdOy7jHly1uMBJSlZTg5UBzwPTVTqno8tll07LuMeXLW4wElKVlODlQHPA9NT+hz6NuX55Hump/Q59G3L88j3TU/oc+jbl+eR7ppbsv97Z/wCov/zXS3Zf72z/ANRf/muluy/3tn/qL/8ANdbVW1VtVYrD/vdV/wBTc941isP+91X/AFNz3jWKw/73Vf8AU3PeNbUK2oVtQqLdILdztkmC8pSG5DZbUpHaAfNUW6QW7nbJMF5SkNyGy2pSO0A+aot0gt3O2SYLylIbkNltSkdoB81Y5r3ScPTCYJhyJDvWSvdxSOW3bjGAPPWOa90nD0wmCYciQ71kr3cUjlt24xgDz1jmvdJw9MJgmHIkO9ZK93FI5bduMYA89aPpmGi49HkSC6pSW5EMtqUntAORyrR9Mw0XHo8iQXVKS3IhltSk9oByOVaPpmGi49HkSC6pSW5EMtqUntAORypXujQ6MktvWcmUqeShwSue0I5jG3H41K90aHRklt6zkylTyUOCVz2hHMY24/GpXujQ6MktvWcmUqeShwSue0I5jG3H41cbT0m3add4UNyFCSiQ+hpRSF5AUoA48r01xtPSbdp13hQ3IUJKJD6GlFIXkBSgDjyvTXG09Jt2nXeFDchQkokPoaUUheQFKAOPK9NTumP6Ntv55fuip3TH9G2388v3RU7pj+jbb+eX7oqBpbo8tl607EuMiXLQ4+FFSUFOBhRHLI9FQNLdHlsvWnYlxkS5aHHwoqSgpwMKI5ZHoqBpbo8tl607EuMiXLQ4+FFSUFOBhRHLI9FW3ips/wBvn/tR/TVt4qbP9vn/ALUf01beKmz/AG+f+1H9NHips/2+f+1H9NHips/2+f8AtR/TR4qbP9vn/tR/TS1rrRcDTVrYlRJMl1br3DIdKcAbSe4DzUta60XA01a2JUSTJdW69wyHSnAG0nuA81LWutFwNNWtiVEkyXVuvcMh0pwBtJ7gPNTz0ZfUiH+W575p56MvqRD/AC3PfNPPRl9SIf5bnvmmumumuiiiiiiiiilTpN+pEz8tv3xSp0m/UiZ+W374pU6TfqRM/Lb98VV9D/1emfpZ9xNVfQ/9Xpn6WfcTVX0P/V6Z+ln3E1nF1udxTd5iUz5QSH1gAPK5eUfTWcXW53FN3mJTPlBIfWAA8rl5R9NZxdbncU3eYlM+UEh9YADyuXlH01E8K3L7wl+2V8aieFbl94S/bK+NRPCty+8JftlfGte1OpS+ihSlqKlGHHJJOSTlFa9qdSl9FClLUVKMOOSScknKK17U6lL6KFKWoqUYcckk5JOUVWdDn0bcvzyPdNVnQ59G3L88j3TVZ0OfRty/PI901WosNzs2t3tRXKNwbW1LdeW/vSrCFFWDtBKu8d1VqLDc7Nrd7UVyjcG1tS3Xlv70qwhRVg7QSrvHdVaiw3Oza3e1Fco3BtbUt15b+9KsIUVYO0Eq7x3VH6Q9VRbo/BVYri8UtpWHdm9vmSMduM99R+kPVUW6PwVWK4vFLaVh3Zvb5kjHbjPfUfpD1VFuj8FViuLxS2lYd2b2+ZIx24z31asXmy3HSjNst7iF392MhtBDJSsvYGfnCAM9vPNWrF5stx0ozbLe4hd/djIbQQyUrL2Bn5wgDPbzzVqxebLcdKM2y3uIXf3YyG0EMlKy9gZ+cIAz2881b9HVpvtrTcPDqXQXS3wuI+HOzdnGCcdoq36OrTfbWm4eHUugulvhcR8Odm7OME47RVv0dWm+2tNw8OpdBdLfC4j4c7N2cYJx2imPULEqVYJzEEKMlxlSWtqtp3Y5c+6mPULEqVYJzEEKMlxlSWtqtp3Y5c+6mPULEqVYJzEEKMlxlSWtqtp3Y5c+6sN1DaL/AGsRzfkugObuFxHw52YzjBOO0VhuobRf7WI5vyXQHN3C4j4c7MZxgnHaKw3UNov9rEc35LoDm7hcR8OdmM4wTjtFPlo1Na3dEM2KLMV4WdimO00lC0niqyEjdjA5kc80+WjU1rd0QzYosxXhZ2KY7TSULSeKrISN2MDmRzzT5aNTWt3RDNiizFeFnYpjtNJQtJ4qshI3YwOZHPNSdB6du8V6YdTRuIhSUcHjuJewcnOOZx3VJ0Hp27xXph1NG4iFJRweO4l7Byc45nHdUnQenbvFemHU0biIUlHB47iXsHJzjmcd1XLl50nEvSbaoRm54dS2lAiHIWcY8oJx3jnmrly86TiXpNtUIzc8OpbSgRDkLOMeUE47xzzVy5edJxL0m2qEZueHUtpQIhyFnGPKCcd455pe6Y/o22/nl+6KXumP6Ntv55fuil7pj+jbb+eX7oqz0wpSOihKkKKVCHIIIOCDldWemFKR0UJUhRSoQ5BBBwQcrqz0wpSOihKkKKVCHIIIOCDldZD4VuX3hL9sr41kPhW5feEv2yvjWQ+Fbl94S/bK+NS7Vc7iq7w0qnyikvoBBeVz8oempdqudxVd4aVT5RSX0AgvK5+UPTUu1XO4qu8NKp8opL6AQXlc/KHprR+mD6vQ/wBLHuKrR+mD6vQ/0se4qtH6YPq9D/Sx7iqtOjL6kQ/y3PfNWnRl9SIf5bnvmrToy+pEP8tz3zTXTXTXRRRRRRRRRSp0m/UiZ+W374pU6TfqRM/Lb98UqdJv1Imflt++Kq+h/wCr0z9LPuJqr6H/AKvTP0s+4mqvof8Aq9M/Sz7iay27/TM79Ic941lt3+mZ36Q57xrLbv8ATM79Ic941DqHUOtp1J/dN/2cf+aK2nUn903/AGcf+aK2nUn903/Zx/5oqt6HPo25fnke6arehz6NuX55Humq3oc+jbl+eR7prjL1TJ1FfpOkpEdpmM/IXHLzZO8BJODz5Z8muMvVMnUV+k6SkR2mYz8hccvNk7wEk4PPlnya4y9UydRX6TpKRHaZjPyFxy82TvASTg8+WfJpY11paNph6GiNIeeEhKyriADGCOzHrpY11paNph6GiNIeeEhKyriADGCOzHrpY11paNph6GiNIeeEhKyriADGCOzHrqFoj65Wv8+P86haI+uVr/Pj/OoWiPrla/z4/wA6/QHdX6A7q/QHdWZXzpKuFsvc2C1AirRHeU2lSirJAPfzrMr50lXC2XubBagRVojvKbSpRVkgHv51mV86SrhbL3NgtQIq0R3lNpUoqyQD386UdV6tlanTFEqMyz1bdt4ZPPdjtz6qUdV6tlanTFEqMyz1bdt4ZPPdjtz6qUdV6tlanTFEqMyz1bdt4ZPPdjtz6qZLNpCLD03H1WiU+qTGZ64lkgbCpHMA9+OVMlm0hFh6bj6rRKfVJjM9cSyQNhUjmAe/HKmSzaQiw9Nx9VolPqkxmeuJZIGwqRzAPfjlXPxr3P7tif4lfGufjXuf3bE/xK+Nc/Gvc/u2J/iV8au7NpaNqKRD1bIkOtSXnEyCy2BsBSrkOfPHk1d2bS0bUUiHq2RIdakvOJkFlsDYClXIc+ePJq7s2lo2opEPVsiQ61JecTILLYGwFKuQ588eTXHpj+jbb+eX7orj0x/Rtt/PL90Vx6Y/o22/nl+6KstN/wB03/ZyP5rqy03/AHTf9nI/murLTf8AdN/2cj+a6xasWrFqmWj6Zg/pDfvCplo+mYP6Q37wqZaPpmD+kN+8K1Lpg+r0P9LHuKrUumD6vQ/0se4qtS6YPq9D/Sx7iqtOjL6kQ/y3PfNWnRl9SIf5bnvmrToy+pEP8tz3zTXTXTXRRRRRRRRRSp0m/UiZ+W374pU6TfqRM/Lb98UqdJv1Imflt++KVujXUlmstllMXOalh1cgrSkoUrI2pGeQPmpW6NdSWay2WUxc5qWHVyCtKShSsjakZ5A+albo11JZrLZZTFzmpYdXIK0pKFKyNqRnkD5qYlaj0AtRUtVvUpRySYRJJ/wUxK1HoBaiparepSjkkwiST/gpiVqPQC1FS1W9SlHJJhEkn/BXn5Q9H3nt37kf6K8/KHo+89u/cj/RXn5Q9H3nt37kf6Kg6x1Zp2dpGZAt09C3VoQltpLS0jkpJwMjA5CoOsdWadnaRmQLdPQt1aEJbaS0tI5KScDIwOQqDrHVmnZ2kZkC3T0LdWhCW2ktLSOSknAyMDkK59Dn0bcvzyPdNc+hz6NuX55HumufQ59G3L88j3TTHHu2k3L8YkcxPCfGUnlGIXvGd3lbe3t55pjj3bSbl+MSOYnhPjKTyjEL3jO7ytvb2880xx7tpNy/GJHMTwnxlJ5RiF7xnd5W3t7eeaTumT/3dq/NufzTSd0yf+7tX5tz+aaTumT/AN3avzbn801cuwYkfowbnR4rDUtNvbWl9DYS4FYHPcBnPpq5dgxI/Rg3OjxWGpabe2tL6GwlwKwOe4DOfTVy7BiR+jBudHisNS029taX0NhLgVgc9wGc+movRHNlzEXUzJT7+wtbeK4Vbfw+zNReiObLmIupmSn39ha28Vwq2/h9mai9Ec2XMRdTMlPv7C1t4rhVt/D7M1O1NN01NauFqioiOXp0KaQjq+Fl08sbinGc9+anamm6amtXC1RURHL06FNIR1fCy6eWNxTjOe/NTtTTdNTWrhaoqIjl6dCmkI6vhZdPLG4pxnPfmssu9gutkDRukRUcPZ4eVJO7GM9hPnFZZd7BdbIGjdIio4ezw8qSd2MZ7CfOKyy72C62QNG6RFRw9nh5Uk7sYz2E+cVsulnYzPR/CdnberIiFTu9O4bRnOR38q2XSzsZno/hOztvVkRCp3encNoznI7+VbLpZ2Mz0fwnZ23qyIhU7vTuG0Zzkd/KvVod0je1Optca3vqaAKwIgTjPZ2pHmr1aHdI3tTqbXGt76mgCsCIE4z2dqR5q9Wh3SN7U6m1xre+poArAiBOM9nakeas/uM2XE6TUQYsp5mImeyhLDbhS2EkpyNo5Y5ms/uM2XE6TUQYsp5mImeyhLDbhS2EkpyNo5Y5ms/uM2XE6TUQYsp5mImeyhLDbhS2EkpyNo5Y5mr3pj+jbb+eX7oq96Y/o22/nl+6KvemP6Ntv55fuiumjtWadg6RhwLjPQh1CFpcaU0tQ5qUcHAweRrpo7VmnYOkYcC4z0IdQhaXGlNLUOalHBwMHka6aO1Zp2DpGHAuM9CHUIWlxpTS1DmpRwcDB5Gp3yh6PvPbv3I/0VO+UPR957d+5H+ip3yh6PvPbv3I/wBFek6j0AhQUhVvSpJyCIRBB/wV6TqPQCFBSFW9KknIIhEEH/BXpOo9AIUFIVb0qScgiEQQf8FLvSVqSzXqyxWLZNS+6iQFqSEKTgbVDPMDz0u9JWpLNerLFYtk1L7qJAWpIQpOBtUM8wPPS70laks16ssVi2TUvuokBakhCk4G1QzzA89NPRl9SIf5bnvmmnoy+pEP8tz3zTT0ZfUiH+W575prprproooooooooqs1FZm79Znba68plLpSStIyRgg/5VWaiszd+szttdeUyl0pJWkZIwQf8qrNRWZu/WZ22uvKZS6UkrSMkYIP+VJnimhfesj2afjSZ4poX3rI9mn40meKaF96yPZp+NHimhfesj2afjR4poX3rI9mn40eKaF96yPZp+NHimhfesj2afjR4poX3rI9mn40eKaF96yPZp+NHimhfesj2afjR4poX3rI9mn40eKaF96yPZp+NM+k9Ls6YjyGWZTj4fWFErSBjAx3Uz6T0uzpiPIZZlOPh9YUStIGMDHdTPpPS7OmI8hlmU4+H1hRK0gYwMd1Ll30szp2XL1czKcfeYdVIDC0gJJUrsyOf/FS5d9LM6dly9XMynH3mHVSAwtICSVK7Mjn/wAVLl30szp2XL1czKcfeYdVIDC0gJJUrsyOf/FSLqzVL2p3Yy34rbHVwoDYonOcef1Ui6s1S9qd2Mt+K2x1cKA2KJznHn9VIurNUvandjLfitsdXCgNiic5x5/VU53Xkl3SwsJgMhsR0scXec4AAzj9VTndeSXdLCwmAyGxHSxxd5zgADOP1VOd15Jd0sLCYDIbEdLHF3nOAAM4/VUTSWrX9LplBiI2/wBZ2Z3qI27c+b11E0lq1/S6ZQYiNv8AWdmd6iNu3Pm9dRNJatf0umUGIjb/AFnZneojbtz5vXTb8n2uq/LvrC+sbev9W2jZu7due3FNvyfa6r8u+sL6xt6/1baNm7t257cU2/J9rqvy76wvrG3r/Vto2bu3bntxSlq3Vr+qExQ/Ebj9W342KJ3bsef1Upat1a/qhMUPxG4/Vt+Niid27Hn9VKWrdWv6oTFD8RuP1bfjYondux5/VWpabhJuPR1FgrWUJkQy0VAZIzkZrUtNwk3Ho6iwVrKEyIZaKgMkZyM1qWm4Sbj0dRYK1lCZEMtFQGSM5Ga9aS0exph2StmW4/1hKQQtIGMZ83rr1pLR7GmHZK2Zbj/WEpBC0gYxnzeuvWktHsaYdkrZluP9YSkELSBjGfN66iy9BxpWqRfVTnkuB9D/AAggYynHLP6qiy9BxpWqRfVTnkuB9D/CCBjKccs/qqLL0HGlapF9VOeS4H0P8IIGMpxyz+qrDVml2dTx47L0pxgMLKgUJBzkY76sNWaXZ1PHjsvSnGAwsqBQkHORjvqw1ZpdnU8eOy9KcYDCyoFCQc5GO+ljxTQvvWR7NPxpY8U0L71kezT8aWPFNC+9ZHs0/GjxTQvvWR7NPxo8U0L71kezT8aPFNC+9ZHs0/GjxTQvvWR7NPxo8U0L71kezT8aPFNC+9ZHs0/GjxTQvvWR7NPxo8U0L71kezT8aPFNC+9ZHs0/GnPTtmbsNmatrTynktFRC1DBOST/AJ056dszdhszVtaeU8loqIWoYJySf86c9O2Zuw2Zq2tPKeS0VELUME5JP+dWdWdWdFFFFFFFFFUWtGblI01Ias3G64VI2cFexWNwzg5HdmqLWjNykaakNWbjdcKkbOCvYrG4ZwcjuzVFrRm5SNNSGrNxuuFSNnBXsVjcM4OR3ZqF0fRr3FtEhF/Mkvl/KOO7vO3aOw5PLOahdH0a9xbRIRfzJL5fyjju7zt2jsOTyzmoXR9GvcW0SEX8yS+X8o47u87do7Dk8s5qfrJm4v6YltWfjddVs4fBXtV+GM4OR3ZqfrJm4v6YltWfjddVs4fBXtV+GM4OR3ZqfrJm4v6YltWfjddVs4fBXtV+GM4OR3ZrHbpJ1ZZ3UNXKfc463E7khUpXMfqVWO3STqyzuoauU+5x1uJ3JCpSuY/UqsduknVlndQ1cp9zjrcTuSFSlcx+pVcYNz1LcZjcSFc7k8+5nYhMpeTgZ8/mFcYNz1LcZjcSFc7k8+5nYhMpeTgZ8/mFcYNz1LcZjcSFc7k8+5nYhMpeTgZ8/mFd7rI1bZ3G0XOdc46nASgKlK5gepVd7rI1bZ3G0XOdc46nASgKlK5gepVd7rI1bZ3G0XOdc46nASgKlK5gepVMGlbZqqZdYD11E6TansLcEh/iNrQU5GUknI7O6mDSts1VMusB66idJtT2FuCQ/wARtaCnIykk5HZ3UwaVtmqpl1gPXUTpNqewtwSH+I2tBTkZSScjs7q0r5PWP7mt/wC7I+FaV8nrH9zW/wDdkfCtK+T1j+5rf+7I+FVCHdELung1Ma1GZxC1wuqpzuHIj8HFVCHdELung1Ma1GZxC1wuqpzuHIj8HF