solar cells: Comprehensive insight into the dependence of performance on architecture. J. Phys. Chem. C, 119, 28, 15868–15873, 2015.
10. Hussain, I. et al., Functional materials, device architecture, and flexibility of perovskite solar cell. Emergent Mater., 1, 3, 133–154, 2018.
11. Marinova, N., Valero, S., Delgado, J.L., Organic and perovskite solar cells: Working principles, materials and interfaces. J. Colloid Interface Sci., 488, 373–389, 2017.
12. Chen, L.-C. and Tseng, Z.-L., ZnO-Based Electron Transporting Layer for Perovskite Solar Cells, in: Nanostructured Solar Cells. 1, 203–215, 2017
13. Li, M.H., Shen, P.S., Wang, K.C., Guo, T.F., Chen, P., Inorganic p-type contact materials for perovskite-based solar cells. J. Mater. Chem. A, 3, 17, 9318– 9319, 2015.
14. Dymshits, A., Henning, A., Segev, G., Rosenwaks, Y., Etgar, L., The electronic structure of metal oxide/organo metal halide perovskite junctions in perovskite based solar cells. Sci. Rep., 5, 1, 1–6, 2015.
15. Zhao, Y., Nardes, A.M., Zhu, K., Mesoporous perovskite solar cells: Material composition, charge-carrier dynamics, and device characteristics. Faraday Discuss., 176, 301–312, 2014.
16. Bi, D. et al., Facile synthesized organic hole transporting material for perovskite solar cell with efficiency of 19.8%. Nano Energy, 23, 138–144, 2016.
17. Jung, H.S. and Park, N.-G., Solar Cells: Perovskite Solar Cells: From Materials to Devices (Small 1/2015). Small, 11, 1, 2–2, 2015.
18. Carnie, M.J. et al., A one-step low temperature processing route for organolead halide perovskite solar cells. Chem. Commun., 49, 72, 7893–7895, 2013.
19. Zhang, Q., Dandeneau, C.S., Zhou, X., Cao, C., ZnO nanostructures for dye-sensitized solar cells. Adv. Mater., 21, 41, 4087–4108, 2009.
20. Marchioro, A. et al., Unravelling the mechanism of photoinduced charge transfer processes in lead iodide perovskite solar cells. Nat. Photonics, 8, 250, 2014.
21. Oh, L.S. et al., Zn2SnO4-based photoelectrodes for organolead halide perovskite solar cells. J. Phys. Chem. C, 118, 40, 22991–22994, 2014.
22. Zhu, L. et al., Mesoporous BaSnO3 layer based perovskite solar cells. Chem. Commun., 52, 5, 970–973, 2016.
23. Bera, A. et al., Perovskite oxide SrTiO3 as an efficient electron transporter for hybrid perovskite solar cells. J. Phys. Chem. C, 118, 49, 28494–28501, 2014.
24. Krishnamoorthy, T. et al., A swivel-cruciform thiophene based hole-transporting material for efficient perovskite solar cells. J. Mater. Chem. A, 2, 18, 6305–6309, 2014.
25. Kim, M.C. et al., Electro-spray deposition of a mesoporous TiO2 charge collection layer: Toward large scale and continuous production of high efficiency perovskite solar cells. Nanoscale, 7, 48, 20725–20733, 2015.
26. Eperon, G.E. et al., Formamidinium lead trihalide: A broadly tunable perovskite for efficient planar heterojunction solar cells. Energy Environ. Sci., 7, 3, 982, 2014.
27. Liu, M., Johnston, M.B., Snaith, H.J., Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature, 501, 7467, 395–398, 2013.
28. Kim, H.S. et al., Control of I-V Hysteresis in CH3NH3PbI3 Perovskite Solar Cell. J. Phys. Chem. Lett., 6, 22, 4633–4639, 2015.
29. Chen, B., Yang, M., Priya, S., Zhu, K., Origin of J-V Hysteresis in Perovskite Solar Cells. J. Phys. Chem. Lett., 7, 5, 905–917, 2016.
30. Zhao, L. et al., High-Performance Inverted Planar Heterojunction Perovskite Solar Cells Based on Lead Acetate Precursor with Efficiency Exceeding 18%. Adv. Funct. Mater., 26, 20, 3508–3514, 2016.
31. Sun, S. et al., The origin of high efficiency in low-temperature solution-processable bilayer organometal halide hybrid solar cells. Energy Environ. Sci., 7, 1, 399–407, 2014.
32. Mutalikdesai, A. and Ramasesha, S.K., Emerging solar technologies: Perovskite solar cell. Resonance, 22, 11, 1061–1083, 2017.
33. Yin, W. et al., Halide Perovskite Materials for Solar Cells: A Theoretical Review Received. J. Mater. Chem. A, 2, 1, 1–7, 2014.
34. Queisser, H.J., Slip patterns on boron-doped silicon surfaces. J. Appl. Phys., 32, 3, 510–519, 1961.
35. Green, M.A., Emery, K., Hishikawa, Y., Warta, W., Dunlop, E.D., Solar cell efficiency tables (version 46). Prog. Photovolt. Res. Appl., 29, 1, 3–15, 2015.
36. Nayak, P.K., Garcia-Belmonte, G., Kahn, A., Bisquert, J., Cahen, D., Photovoltaic efficiency limits and material disorder. Energy Environ. Sci., 5, 3, 6022–6039, 2012.
37. Stranks, S.D. et al., Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science, 342, 341–344, 80, 2013.
38. Wang, B., Xiao, X., Chen, T., Perovskite photovoltaics: A high-efficiency newcomer to the solar cell family. Nanoscale, 6, 21, 12287–12297, 2014.
39. Pang, S. et al., NH2CH=NH2PbI3: An alternative organolead iodide perovskite sensitizer for mesoscopic solar cells. Chem. Mater., 26, 3, 1485–1491, 2014.
40. Stoumpos, C.C., Malliakas, C.D., Kanatzidis, M.G., Semiconducting tin and lead iodide perovskites with organic cations: Phase transitions, high mobilities, and near-infrared photoluminescent properties. Inorg. Chem., 52, 9019– 9038, 2013.
41. Ogomi, Y. et al., CH3NH3SnxPb(1-x)I3 perovskite solar cells covering up to 1060 nm. J. Phys. Chem. Lett., 5, 6, 1004–1011, 2014.
42. Hao, F., Stoumpos, C.C., Chang, R.P.H., Kanatzidis, M.G., Anomalous band gap behavior in mixed Sn and Pb perovskites enables broadening of absorption spectrum in solar cells. J. Am. Chem. Soc, 5, 6, 1004–1011, 2014.
43. Green, M.A. et al., Solar cell efficiency tables (version 51). Prog. Photovolt. Res. Appl., 26, 3–12, 2018.
44. Sha, W.E., II, Ren, X., Chen, L., Choy, W.C.H., The efficiency limit of methylammonium lead iodide perovskite solar cells. Appl. Phys. Lett., 106, 22, 221104, 2015.
45. Noel, N.K. et al., Lead-Free Organic-inorganic Tin Halide Perovskites for Photovoltaic Applications. Energy Environ. Sci., 7, 9, 3061–3068, 2014.
46. Hao, F., Stoumpos, C.C., Cao, D.H., Chang, R.P.H., Kanatzidis, M.G., Lead-free solid-state organic–inorganic halide perovskite solar cells. Nat. Photonics, 8, 6, 489–494, 2014.
47. Mitzi, D.B., Chondroudis, K., Kagan, C.R., Organic-inorganic electronics. IBM J. Res. Dev., 45, 1, 29–45, 2001.
48. Liu, J. et al., A dopant-free hole-transporting material for efficient and stable perovskite solar cells † Broader context Energy & Environmental Science COMMUNICATION. Energy Environ. Sci., 7, 9, 2963–2967, 2014.
49. Mei, A. et al., A hole-conductor-free, fully printable mesoscopic perovskite solar cell with high stability. Science, 80, 345, 6194, 295–298, 2014.
50. Dualeh, A. et al., Effect of annealing temperature on film morphology of organic-inorganic hybrid pervoskite solid-state solar cells. Adv. Funct. Mater., 4, 17, 2880–2884, 2014.
51. Pathak, S.K. et al., Performance and Stability Enhancement of Dye-Sensitized and Perovskite Solar Cells by Al Doping of TiO2. Adv. Funct. Mater., 24, 38, 6046–6055, 2014.
52. Asghar, M., II, Zhang, J., Wang, H., Lund, P.D., Device stability of perovskite solar cells – A review. Renew. Sust. Energ. Rev., 77, 131–146, 2017.
53. Liu, P., Wang, W., Liu, S., Yang, H., Shao, Z., Fundamental Understanding