Kirk N. Gelatt

Essentials of Veterinary Ophthalmology


Скачать книгу

forming layers where they terminate in discrete clusters, generating a retinotopic map of the contralateral visual hemifield (with receptive fields similar in size and response properties to the retinal receptive fields).

      Primary Visual Cortex

      Brodmann demonstrated that the primary visual cortex (i.e., area 17) receiving the input from the LGN is located in the posterior part of the occipital lobe in a number of species. This area is now usually called V1 (visual area 1) or the striate cortex, after the striae of Gennari. In contrast, all other visual areas in the cortex lacking the stria (which is a myelinated stripe where the LGN axons enter the gray matter of the V1) are termed extrastriate.

      V1 has been mapped in several species. In the cat, it occupies the posteromedial portion of the cortex, extending from the crown of the lateral gyrus on the dorsal surface to the superior bank of the splenial sulcus on the medial surface. In the dog, it is located at the junction of the marginal and endomarginal gyri. The striate cortex has also been identified in the horse.

      Photoreceptors can respond to changes in levels of background luminance by processes of adaptation and this results in an extended operating range, allowing the eye optimal performance at a given illumination level. A decrease in background illumination to below 0.03 cd/m2 will deactivate the cone system, resulting in increased light sensitivity (i.e., lower threshold) and scotopic rod vision. An increase in background illumination, to 0.03–3 cd/m2, will lead to mesopic vision in which both the rod and cone systems are active, for example, before dawn or after sunset. Further increase in background illumination above 3 cd/m2, to photopic levels, will result in rod saturation. In such an environment, cones will continue to function, albeit with a higher threshold, or with lower sensitivity.

      Scotopic Vision

      Rods and Rod Pathways

      Cones are inactive in scotopic conditions, and in such an environment our fovea becomes a relative blind spot. Instead, scotopic vision is possible because of the molecular and anatomical characteristics of both rods and the rod pathway. The unique features make an individual rod more sensitive than an individual cone. Another important feature that enables sensitive scotopic vision is the converging nature of the rod pathways. In cats, it has been estimated that in the peripheral retina, the output of approximately 75 000 rod photoreceptors converges on about 5000 rod bipolar cells, which output to 250 amacrine cells, that converge on one ganglion cell.

      In many animal species, increased number and density of rods enhance scotopic vision. It can be appreciated that dogs have a higher maximal rod concentration than cats, even though most people associate the latter with greater scotopic sensitivity. This discrepancy may be explained by the structure of the tapetum, which is less reflective in dogs than in cats.

      Tapetum

      One of the most fascinating adaptations for enhanced scotopic vision is the evolution of a reflective tapetum in the choroid. Light photons striking this layer bounce back onto the retina, thus giving them a second chance to be absorbed by the photoreceptors. This second opportunity is not significant in daytime, as cones absorb enough photons during their “first pass” through the retina. In fact, the tapetum has a detrimental effect on visual acuity in broad daylight, as the light is reflected onto a photoreceptor different from the one in the original trajectory. However, at night this detrimental effect on visual resolution is insignificant as cones are inactive. Instead, the retina benefits from the increased probability that rods will absorb the few photons entering the eye in a dim environment, thus enhancing scotopic vision.

      Globe Size

      The dimensions of the ocular tissues also contribute to improved scotopic sensitivity in many species. For example, the mean diameter of the cornea in cats and humans is 16.5 and 11.7 mm, respectively. Consequently, much more light enters the cat's eye. Next, light must pass through the pupil. The diameter of a mydriatic pupil in cats and humans is about 12 and 8 mm, respectively, translating into a pupillary aperture of 113 and 50 mm2, respectively. As a result, far more light passes through the cornea and pupil to reach the feline retina at night, when the pupil is fully dilated. Indeed, it has been calculated that a fully dilated pupil increases the amount of light reaching the retina by