Группа авторов

Catalytic Asymmetric Synthesis


Скачать книгу

href="#fb3_img_img_7691cb2b-7fb4-53b4-a019-d60ae8f2d059.gif" alt="equation"/>

      1.7.3. Two Chiral Catalysts

      In the synthesis of molecules with two chiral centers, there are four possible isomers. When one chiral catalyst controls one chiral center and the second chiral catalyst controls the second chiral center independently with minimal matched/mismatched interactions, all four isomers can be synthesized with high selectivity. However, the realization of this concept is very difficult. Recently, excellent catalyst systems have been reported for this type of the reaction.

      The author also extended this reaction to the stereodivergent α‐allylation of linear aldehydes with dual chiral iridium catalyst and diphenylprolinol silyl ether catalyst [86].

      Source: [85]/American Association for the Advancement of Science.

Schematic illustration of stereodivergent alpha-allylation of branched aldehydes using an alkyne.

      Source: Based on [87].

      1 1. (a) Hajos, Z. G.; Parrish, D. R. German Patent DE 2102623, 1971. (b) Hajos, Z. G.; Parrish, D. R. J. Org. Chem. 1974, 39, 1615–1621.

      2 2. (a) Eder, U.; Sauer, G.; Wiechert, R. German Patent DE 2014757, 1971. (b) Eder, U.; Sauer, G.; Wiechert, R. Angew. Chem. Int. Ed. 1971, 10, 496–497.

      3 3. (a) List, B.; Lerner, R. A.; Barbas III, C. F. J. Am. Chem. Soc. 2000, 122, 2395–2396. (b) Sakthivel, K.; Notz, W.; Bui, T.; Barbas III, C. F. J. Am. Chem. Soc. 2001, 123, 5260–5267. Review of enamine, see; (c) Mukherjee, S.; Yang, J. W.; Hoffmann, S.; List, B. Chem. Rev. 2007, 107, 5471–5569.

      4 4. (a) Ahrendt, K. A.; Borths, C. J.; MacMillan, D. V. C. J. Am. Chem. Soc. 2000, 122, 4243–4244. Reviews of iminium ion: (b) Lelais, G.; MacMillan, D. W. C. Aldrichimica Acta, 2006, 39, 79–87. (c) Erkkilä, A.; Majander, I.; Pihko, P. M. Chem Rev. 2007, 107, 5416–5470.

      5 5. Selected reviews on organocatalysis: (a) Asymmetric Organocatalysis 1: Lewis Base and Acid Catalysts, (Ed.: B. List) Stuttgart: Thieme, 2012. (b) Asymmetric Organocatalysis 2: Brønsted Base and Acid catalysts, and Additional Topics (Ed.: K. Maruoka) Stuttgart: Thieme, 2012.

      6 6. Watson, A. J. B.; MacMillan, D. W. C. Catalytic Asymmetric Synthesis, 3rd ed, (Ed.: I. Ojima). Hoboken, John Wiley & Sons, 2010, pp. 39–57.

      7 7. Reviews, see: (a) Palomo, C.; Mielgo, A. Angew. Chem. Int. Ed. 2006, 45, 7876–7880. (b) Mielgo, A.; Palomo, C. Chem. Asian J. 2008, 3, 922–948. (c) Xu, L. W.; Li, L.; Shi, Z. H. Adv. Synth. Catal. 2010, 352, 243–279. (d) Jensen, K. L.; Dickmeiss, G.; Jiang, H.; Albrecht, Ł.; Jørgensen, K. A. Acc. Chem. Res. 2012, 4, 248–264. (e) Wróblewska, A. Synlett 2012, 23, 953–954. (f) Gotoh, H.; Hayashi, Y. Sustainable Catalysis (Eds.: Dunn, P. J.; Hii, K. K.; Krische, M. J.; Williams, M. T.) Hoboken: Wiley, 2013, pp. 287–316. (g) Donslund, B. S.; Johansen, T. K.; Poulsen, P. H.; Halskov, K. S.; Jørgensen, K. A. Angew. Chem. Int. Ed. 2015, 54, 13860–13874.

      8 8. Marigo, M.; Wabnitz, T. C.; Fielenbach, D.; Jørgensen, K. A. Angew. Chem. Int. Ed. 2005, 44, 794–797.

      9 9. Hayashi, Y.; Gotoh, H.; Hayashi T.; Shoji, M. Angew. Chem. Int. Ed. 2005, 44, 4212–4215.

      10 10. Reviews: (a) Marcelli, T.; van Maarseveen, J. H.; Hiemstra, H. Angew. Chem. Int. Ed. 2006, 45, 7496–7504. (b) Xu, L.‐W.; Luo, J.; Lu, Y. Chem. Commun. 2009, 1807–1821. (c) Melchiorre, P. Angew. Chem. Int. Ed. 2012, 51, 9748–9770.

      11 11. (a) Lakhdar, S.; Tokuyasu, T.; Mayr, H. Angew. Chem. Int. Ed. 2008, 47, 8723–8726. (b) Mayr, H.; Lakhdar, S.; Maji, B.; Ofial, A. R. Beilstein J. Org. Chem. 2012, 8, 1458–1478. (c) Lakhdar, S.; Maji, B.; Mayr, H. Angew. Chem. Int. Ed. 2012, 51, 5739–5742. (d) An, F.; Maji, B.; Min, E.; Ofial, A. R.; Mayr, H. J. Am. Chem. Soc. 2020, 142, 1526–1547.

      12 12. (a) List, B. Amine‐catalyzed aldol reactions, in: Modern Aldol Reactions (Ed.: R. Mahrwald) Weinheim: Wiley‐VCH, 2004, Chapter 4, pp. 161–200. (b) Mase, N.; Hayashi, Y., The aldol reaction: organocatalysis approach, in: Comprehensive Organic Synthesis, 2nd ed (Eds.: P. Knochel, G. A. Molander) Amsterdam: Elsevier, 2014; Chapter 2.07, pp. 273–339. (c) Yamashita, Y.; Yasukawa, T.; Yoo, W. J.; Kitanosono, T.; Kobayashi, S. Chem. Soc. Rev. 2018, 47, 4388–4480.

      13 13. (a) Bahmanyar, S.; Houk, K. N.; Martin, H. J.; List, B. J. Am. Chem. Soc. 2003, 125, 2475–2479. (b) Allemann, C.; Gordillo, R.; Clemente, F. R.; Cheong, P. H. Y.; Houk, K. N. Acc. Chem. Res. 2004, 37, 558–569.

      14 14. Kano, T.; Yamaguchi, Y.; Tanaka Y.; Maruoka, K. Angew. Chem. Int. Ed. 2007, 46, 1738–1740.

      15 15. Hayashi, Y.; Itoh, T.; Aratake, S.; Ishikawa, H. Angew. Chem. Int. Ed. 2008,