2014, 20, 7616–7620.
144 144. Zhu, C.; Akiyama, T. Adv. Synth. Catal. 2010, 352, 1846–1850
145 145. Henseler, A.; Kato, M.; Mori, K.; Akiyama, T. Angew. Chem. Int. Ed. 2011, 50, 8180–8183.
146 146. Sakamoto, T.; Horiguchi, K.; Saito, K.; Mori, K.; Akiyama, T. Asian J. Org. Chem. 2013, 2, 943–946.
147 147. Miyagawa, M.; Takashima, K.; Akiyama, T. Synlett 2018, 29, 1607–1610.
148 148. Horiguchi, K.; Yamamoto, E.; Saito, K.; Yamanaka, M.; Akiyama, T. Chem. Eur. J. 2016, 22, 8078–8083.
149 149. Saito, K.; Akiyama, T. Chem. Commun. 2012, 48, 4573–4575.
150 150. Sakamoto, T.; Mori, K.; Akiyama, T. Org. Lett. 2012, 14, 3312–3315.
151 151. Shibata, Y.; Yamanaka, M. J. Org. Chem. 2013, 78, 3731–3736.
152 152. Saito, K.; Miyashita, H.; Akiyama, T. Org. Lett. 2014, 16, 5312–5315.
153 153. Saito, K.; Shibata, Y.; Yamanaka, M.; Akiyama, T. J. Am. Chem. Soc. 2013, 135, 11740–11743.
154 154. Saito, K.; Akiyama, T. Angew. Chem. Int. Ed. 2016, 55, 3148–3152.
155 155. (a) Zhang, Z.; Jain, P.; Antilla, J. C. Angew. Chem. Int. Ed. 2011, 50, 10961–10964. (b) See also, Enders, D.; Stöckela, B. A.; Rembiaka, A. Chem. Commun. 2014, 50, 4489–4491.
156 156. Na, F.; Lopez, S. S.; Beauseigneur, A.; Hernandez, L. W.; Sun, Z.; Antilla, J. C. Org. Lett. 2020, 22, 5953–5957.
157 157. Yang, K.; Lou, Y.; Wang, C.; Qi, L.‐W.; Fang, T.; Zhang, F.; Xu, H.; Zhou, L.; Li, W.; Zhang, G.; Yu, P.; Song, Q. Angew. Chem. Int. Ed. 2020, 59, 3294–3299.
158 158. Wang, Z.; Ai, F.; Wang, Z.; Zhao, W.; Zhu, G.; Lin, Z.; Sun, J. J. Am. Chem. Soc. 2015, 137, 383–389.
159 159. Sun, Z.; Winschel, G. A.; Borovika, A.; Nagorny, P. J. Am. Chem. Soc. 2012, 134, 8074–8077.
160 160. Lin, J.‐S.; Yu, P.; Huang, L.; Zhang, P.; Tan, B.; Liu, X.‐Y. Angew. Chem. Int. Ed. 2015, 54, 7847–7851.
161 161. Yu, Z.‐L.; Cheng, Y.‐F.; Jiang, N.‐C.; Wang, J.; Fan, L.‐W.; Yuan, Y.; Li, Z.‐L.; Gu, Q.‐S.; Liu, X.‐Y. Chem. Sci. 2020, 11, 5987–5993.
162 162. Samanta, R. C.; Yamamoto, H. J. Am. Chem. Soc. 2017, 139, 1460–1463.
163 163. Ackermann, L.; Althammer, A. Synlett 2008, 995–998.
164 164. Tsuji, N.; Kennemur, J. L.; Buyck, T.; Lee, S.; Prévost, S.; Kaib, P. S. J.; Bykov, D.; Farès, C.; List, B. Science 2018, 359, 1501–1505.
165 165. Zhang, P.; Tsuji, N.; Ouyang, J.; List, B. J. Am. Chem. Soc. 2021, 143, 675–680.
166 166. Zhao, W.; Qian, H.; Li, Z.; Sun, J. Angew. Chem. Int. Ed. 2015, 54, 1910–1913.
167 167. Li, X.; Duan, M.; Deng, Z.; Shao, Q.; Chen, M.; Zhu, G.; Houk, K. N.; Sun, J. Nat. Catal. 2020, 3, 1010–1019.
168 168. Li, F.; Korenaga, T.; Nakanishi, T.; Kikuchi, J.; Terada, M. J. Am. Chem. Soc. 2018, 140, 2629–2642.
169 169. Kayal, S.; Kikuchi, J.; Shimizu, M.; Terada, M. ACS Catal. 2019, 9, 6846–6850.
170 170. Ma, D.; Miao, C.‐B.; Sun, J. J. Am. Chem. Soc. 2019, 141, 13783–13787.
171 171. Wang, H. W.; Zhu, J. J. Am. Chem. Soc. 2019, 141, 11372–11377.
172 172. Monaco, M. R.; Poladura, B.; Dias de los Bernardos, M.; Leutzsch, M.; Goddard, R.; List, B. Angew. Chem. Int. Ed. 2014, 53, 7063–7067.
173 173. Liao, S.; Čorić, I.; Wang, Q.; List, B. J. Am. Chem. Soc. 2012, 134, 10765–10768.
174 174. Liao, S.; Leutzsch, M.; Monaco, M. R.; List, B. J. Am. Chem. Soc. 2016, 138, 5230–5233.
175 175. (a) For reviews, see: Shirakawa, S.; Liu, S.; Kaneko, S. Chem. Asian J. 2016, 11, 330–341. (b) Renzi, P. Org. Biomol. Chem. 2017, 15, 4506–4516. (c) Wang, Y.‐B.; Tan, B. Acc. Chem. Res. 2018, 51, 534–547. (d) Corti, V.; Bertuzzi, G. Synthesis 2020, 52, 2450–2468.
176 176. Xiang, S.; Cheng, J. K.; Tan, B. (this issue). Chapter 19 – Asymmetric synthesis of axially chiral compounds. In: Akiyama, T. and Ojima, I. Catalytic Asymmetric Synthesis, 4e, Wiley.
177 177. Shibata, T. (this issue). Chapter 20 – Asymmetric synthesis of planar‐chiral and helically chiral compounds. In: Akiyama, T. and Ojima, I. Catalytic Asymmetric Synthesis, 4e, Wiley.
178 178. (a) Mukherjee, S.; List, B. J. Am. Chem. Soc. 2007, 129, 11336–11337. (b) Jiang, G.; Halder, R.; Fang, Y.; List, B. Angew. Chem. Int. Ed. 2011, 50, 9752–9755. (c) Jiang, G.; List, B. Adv. Synth. Catal. 2011, 353, 1667–1670.
179 179. Cai, Q.; Zhao, Z.‐A.; You, S.‐L. Angew. Chem. Int. Ed. 2009, 48, 7428–7431.
180 180. Hu, W.; Xu, X.; Zhou, J.; Liu, W.‐J.; Huang, H.; Hu, J.; Yang, L.; Gong, L.‐Z. J. Am. Chem. Soc. 2008, 130, 7782–7783.
181 181. (a) Guo, X.; Hu, W. Acc. Chem. Res. 2013, 46, 2427–2440. (b) Lv, F.; Liu, S.; Hu, W. Asian J. Org. Chem. 2013, 2, 824–836.
182 182. Li, J.; Zhang, D.; Chen, J.; Ma, C.; Hu, W. ACS Catal. 2020, 10, 4559–4565.
183 183. Zhang, D.; Zhou, J.; Xia, F.; Kang, Z.; Hu, W. Nat. Commun. 2015, 6, 5801.
184 184. Qiu, H.; Li, M.; Jiang, L.‐Q.; Lv, F.‐P.; Zan, L.; Zhai, C.‐W.; Doyle, M. P.; Hu, W.‐H. Nature Chem. 2012, 4, 733–738.
185 185. (a) Rono, L. J.; Yayla, H. G.; Wang, D. Y.; Armstrong, M. F.; Knowles, R. R. J. Am. Chem. Soc. 2013, 135, 17735–17738. (b) Gentry, E. C.; Knowles, R. R. Acc. Chem. Res. 2016, 49, 1546–1556. (c) For a recent example, see: Roos, C. B.; Demaerel, J.; Graff, D. E.; Knowles, R. R. J. Am. Chem. Soc. 2020, 142, 5974–5979.
186 186. For a review, see: Yin, Y.; Zhao, X.; Qiao, B.; Jiang, Z. Org. Chem. Front. 2020, 7, 1283–1296.
187 187. Masson, G. (this issue). Chapter 8 – Asymmetric visible‐light photoredox catalysis. In: Akiyama, T. and Ojima, I. Catalytic Asymmetric Synthesis, 4e, Wiley.
3 ASYMMETRIC BASE ORGANOCATALYSIS
Azusa Kondoh and Masahiro Terada
Graduate School of Science, Tohoku University, Sendai, Japan
3.1. INTRODUCTION
Brønsted base catalysis – the catalysis by a small molecule having Brønsted basicity, such as an amine – is one of the most fundamental types of catalysis in organic chemistry. The catalysis enables the direct transformation of starting compounds into desired products in a highly atom‐economical fashion under mild reaction conditions and, thus, has been widely utilized in organic synthesis over a long period of time. In particular, the catalysis has recently attracted considerable attention as a family of “environmentally benign” organocatalysis, and the development of enantioselective reactions has been intensively explored by using chiral uncharged organobases as a catalyst [1]. Generally, the catalysis is initiated by the generation of an anionic nucleophile through the direct deprotonation of a pronucleophile by a Brønsted base catalyst (Figure 3.1). Then, the transformation of the anionic nucleophile, such as addition to an unsaturated bond, rearrangement, and isomerization, proceeds to generate a different anionic intermediate. Finally, the protonation of the resulting anionic intermediate with the conjugate acid of the Brønsted base catalyst (or the other molecule of a pronucleophile in some cases) occurs to provide the desired products along with the regeneration of the catalyst (or the anionic nucleophile), completing the catalytic cycle. In the case of enantioselective reactions, the transformation of the anionic nucleophile (and/or the protonation of the anionic intermediate) proceeds in a stereoselective fashion under the influence of the conjugate acid of a chiral Brønsted base catalyst, and an enantio‐enriched product can be obtained.
In