свойствами?
Датский физик Нильс Бор вышел из этой ситуации, сформулировав принцип дополнительности, согласно которому всё зависит от взаимодействия микрообъекта с приборами. Приборы вмешиваются в состояния объекта и видоизменяют его. Отделаться от их влияния невозможно, поэтому разные приборы и по-разному проявляют эффект этого взаимодействия [10]. В связи с этим приписывать самим микрообъектам свойства либо волн, либо частиц неправомерно, они такими свойствами не обладают. На вопрос о том, а как же всё-таки микрообъекты выглядят без приборов, ответ Н. Бора был таков: «Мы не знаем, поскольку нет средств установить это». Ну и чем данное положение в принципе отличается от учения И. Канта о «вещах в себе»?
Формулировка немецким физиком Вернером Гейзенбергом принципа неопределённости ещё более запутало картину микрофизической реальности и привело к странным и во многом необъяснимым эффектам. Принцип неопределённости основывается на вероятностном понимании явлений микромира, в частности, пространственного и импульсного описания микрофизических явлений. Если, скажем, пространственное положение объекта не определено, то он может обнаруживать свою локализацию в определённой сфере, что ведёт к туннельному эффекту. Если поместить тонкое зеркало внутри световода, то фотоны пройдут через него и пронесут с собой информацию. Поскольку их положение не определено, то они туннелируются через препятствие. Долгое время считалось, что принципы дополнительности и неопределённости органично связаны между собой, однако в настоящее время установлено, что они имеют самостоятельное значение.
В 1936 году физики пришли к консенсусу, определившему, что оба подхода к определению микрообъектов имеют равноправный, хотя и противоречивый характер. Действительно, для описания волновых свойств используется уравнение Шрёдингера или преобразование Фурье, в то время как для описания частиц необходимо применять матричное исчисление. Математика оказывается совершенно различной.
Понимание того, что квантовые явления находятся в состоянии суперпозиции и демонстрирует их запутанность. Так, если микрообъекты находятся в этих состояниях и, даже если в пространстве они разделены огромными расстояниями, то воздействие на один объект приводит к мгновенному изменению параметров другого объекта. Это получило название принципа нелокальности. До сих пор более-менее внятного объяснения этому феномену нет, поскольку современная наука почему-то считает, что никакое физическое взаимодействие не может распространяться быстрее скорости света.
Возможно, физика XXI века сумеет разрешить эти парадоксы, и агностицизм И. Канта и Н. Бора будет преодолён. Если концепция голографической Вселенной окажется верной, то указанные противоречия могут быть легко объяснимы, и наконец удастся узнать, как выглядит микрофизическая реальность без приборов. Но это будет уже совсем другая наука.
Суперструны как предтеча новой теории Всего
Триумф