Группа авторов

Poly(lactic acid)


Скачать книгу

to have a T m of 191°C. The high T m for the latter PLA was believed to result from stereocomplex formation of synthesized stereoblock PLA. The work using aluminum catalysts in stereoselective polymerization has continued [133,170–172], and other metal complexes have been utilized as well [158, 164,173–175]. Many of the studies, though, were conducted only in solution; therefore, the selectivity of the catalyst in, for example, melt polymerization remains unclear. A review including discussion on the stereocontrolled ROP of rac‐ and meso‐lactides has been published [176].

      Metal‐free catalysis of ROP was reviewed [177, 178]. Both organocatalytic (nucleophilic, cationic, and bifunctional) and enzymatic approaches were discussed.

       3.4.3.3 Post‐Polymerization Treatments

      Separate post‐polymerization treatments of PLA have also been described in the literature. Drying of the polymer is generally done before processing to minimize the thermohydrolysis and molecular weight reduction during the melt processing. Suggested drying conditions for crystallized PLA is in the temperature range of 65–90°C, using dehumidified air with a dew point of −40°C [192]. More recently, the end‐of‐life options of bio‐based polymers have been brought into sustainability discussions. For PLA, this can be seen in the form of a number of suggested approaches on how to deal with waste materials from the polymerization process, the manufacturing process of end products, or the end product after its use. Converting of PLA into lower‐molecular‐weight polymers has been described, as well as the complete hydrolysis of the polymer into LA for use as new building blocks for either biosolvents or polymers [193–195].

      1 1. H. Tsuji, Y. Ikada, Macromol. Chem. Phys. 1996, 197, 3483–3499.

      2 2. J. Huang, M. S. Lisowski, J. Runt, E. S. Hall, R. T. Kean, N. Buehler, J. S. Lin, Macromolecules 1998, 31, 2593–2599.

      3 3. A. Södergård, M. Stolt, Prog. Polym. Sci. 2002, 27, 1123–1163.

      4 4. I. Ajioka, K. Enomoto, K. Suzuki, A. Yamaguchi, J. Environ. Polym. Degrad. 1995, 3, 225–234.

      5 5. S.‐I. Moon, C. W. Lee, I. Taniguchi, M. Miyamoto, Y. Kimura, Polymer 2001, 42, 5059–5062.

      6 6. K. Hiltunen, M. Härkönen, J. V. Seppälä, T. Väänänen, Macromolecules 1996, 29, 8677–8682.

      7 7. BCC Research LLC, Staff Report. PLS025G biodegradable polymers: global markets and technologies through 2022, BCC Research, Report Code PLS025G, June 2018, ISBN: 978‐1‐62296‐759‐9, 2018.

      8 8. R. K. Kulkarni, K. C. Pani, C. Neuman, F. Leonard, Arch. Surg. 1966, 93, 839–843.

      9 9. A broad range of standard, custom and specialized biodegradable polymers for medical applications. Available at https://healthcare.evonik.com/en/medical‐devices/biodegradable‐materials/resomer‐portfolio (accessed date 18 April 2021).

      10 10. We make Ingeo, a new material for plastics & fibers with unique properties that all begin with greenhouse gases. Available at https://www.natureworksllc.com (accessed date 5 May 2021).

      11 11. Ingeo in use. Available at https://www.natureworksllc.com/Ingeo‐in‐Use (accessed date 18 April 2021).

      12 12. Applications & solutions. Available at https://www.total‐corbion.com/applications‐solutions/ (accessed date 18 April 2021).

      13 13. Bioplastics market data. Available at www.european‐bioplastics.org/market/ (accessed date February 16, 2021).

      14 14. About total Corbion PLA. Available at https://www.total‐corbion.com/about‐total‐corbion‐pla/ (accessed date 18 April 2021).

      15 15. Total Corbion PLA announces the first world‐scale PLA plant in Europe. Available at https://www.total‐corbion.com/news/total‐corbion‐pla‐announces‐the‐first‐world‐scale‐pla‐plant‐in‐europe/ (accessed date 18 April 2021).

      16 16. Bioplastics Magazine 2020, 15(4), 24–25.

      17 17. K. K. Jem, B. Tan, Adv. Ind. Eng. Polym. Res. 2020, 3, 60–70.

      18 18. Bioplastics Magazine 2017, 12(04), 36–37.

      19 19. S. Kéki, I. Bodnár, J. Borda, G. Deák, M. Zsuga, J. Phys. Chem. B 2001, 105, 2833–2836.

      20 20. N. M. Qureshi, B. Woodfine, EP 0,937,743, 1999 (to Kobe Steel).

      21 21. A. Duda, S. Penczek, Macromolecules 1990, 23, 1636–1639.

      22 22. D. K. Yoo, D. Kim, D. S. Lee, Macromol. Res. 2005, 13, 68–72.

      23 23. Y. M. Harshe, G. Storti, M. Morbidelli, S. Gelosa, D. Moscatelli, Macromol. Symp. 2007, 259, 116–123.

      24 24. G. X. Chen, H. S. Kim, E. S. Kim, J. S. Yoon, Eur. Polym. J. 2006, 42, 468–472.

      25 25. S.‐I. Moon, C. W. Lee, M. Miyamoto, Y. Kimura, J. Polym. Sci. Part A 2000, 38, 1673–1679.

      26 26. H. Maruyama, T. Murayama, N. Yanagisawa, N. Tsuzaki, EP 0,848,026, 1998 (to Kyowa Yuka).

      27 27. Y. H. Kim, K. D. Ahn, Y. K. Han, S. H. Kim, J. B. Kim, U.S. Patent 5,434,241, 1995 (to Korea Institute of Science and Technology).

      28 28. A. Södergård, M. Stolt, EP 1,525,249, 2005 (to Tate & Lyle Public Limited Co.).

      29 29. N. Yanagisawa, T. Nezu, K. Hotta, T. Murayama, N. Tsuzaki, S. Kodama, H. Maruyama, Y. Yokomori, EP 0,823,448, 1998 (to Kyowa Hakko Kogyo).

      30 30. K. Miyazaki, H. Noguchi, T. Ota, A. Kasai, H. Yamaoka, EP 0,792,901, 1997 (to Mitsubishi).

      31 31. S.‐I. Moon, I. Taniguchi, M. Miyamoto, Y. Kimura, C. W. Lee, High Perform. Polym. 2001, 13, 189–196.

      32 32. Y. Terado,