J. H. Jang, L. D. Shea, J. Control. Release 2003, 86, 157.
262 262. K. Koushik, U. B. Kompella, Pharm. Res. 2004, 21, 524.
263 263. R. Li, Y. Wu, Z. Bai, et al., RSC Adv. 2020, 10, 42120.
264 264. N. Andronova, A. C. Albertsson, Biomacromolecules 2006, 7, 1489.
265 265. M. Ryner, A. C. Albertsson, Macromol. Symp. 2001, 175, 11.
266 266. W. Li, Y. Ma, Z. Fan, Polym. Eng. Sci. 2015, 55, 2534.
267 267. J. Shin, M. T. Martello, M. Shrestha, et al., Macromolecules 2011, 44, 87.
268 268. S. Lee, K. Lee, Y. W. Kim, et al., ACS Sustain. Chem. Eng. 2015, 3, 2309.
269 269. T. R. Ewert, A. M. Mannion, M. L. Coughlin, et al., J. Rheol. 2018, 62, 161.
270 270. K. Ding, A. John, J. Shin, et al., Biomacromolecules 2015, 16, 2537.
271 271. H. Sajjad, W. B. Tolman, T. M. Reineke, ACS Appl. Polym. Mater. 2020, 2, 2719.
272 272. D. K. Schneiderman, M. A. Hillmyer, Macromolecules 2016, 49, 2419.
273 273. H. J. Kim, K. Jin, J. Shim, et al., ACS Sustain. Chem. Eng. 2020, 8, 12036.
274 274. K. Odelius, P. Plikk, A. C. Albertsson, Biomacromolecules 2005, 6, 2718.
275 275. M. Källrot, U. Edlund, A. C. Albertsson, Macromol. Biosci. 2008, 8, 645.
276 276. S. Li, A. Girard, H. Garreau, et al., Polym. Degrad. Stab. 2000, 71, 61.
277 277. M. Hakkarainen, A. C. Albertsson, S. Karlsson, Polym. Degrad. Stab. 1996, 52, 283.
278 278. Y. Wang, Z. Jia, J. Jiang, et al., Macromolecules 2019, 52, 7564.
279 279. X. Hua, X. Liu, D. Cui, Macromolecules 2020, 53, 5289.
280 280. K. Stridsberg, A. C. Albertsson, Polymer 2000, 41, 7321.
281 281. M. Källrot, U. Edlund, A. C. Albertsson, Biomacromolecules 2007, 8, 2492.
282 282. T. Fuoco, T. Mathisen, A. F. Wistrand, Biomacromolecules 2019, 20, 1346.
283 283. T. Fuoco, T. Mathisen, A. F. Wistrand, Polym. Degrad. Stab. 2019, 163, 43.
284 284. K. Numata, A. F. Wistrand, A. C. Albertsson, et al., Biomacromolecules 2008, 9, 2180.
285 285. H. Fukuzaki, M. Yoshida, M. Asano, Eur. Polym. J. 1989, 25, 1019.
286 286. M. S. Reeve, S. P. McCarthy, M. J. Downey, et al., Macromolecules 1994, 27, 825.
287 287. H. Cai, V. Dave, R. A. Gross, et al., J. Polym. Sci. Part B: Polym. Phys. 1996, 34, 2701.
288 288. S. Li, S. McCarthy, Macromolecules 1999, 32, 4454.
289 289. S. Li, M. Tenon, H. Garreau, et al., Polym. Degrad. Stab. 2000, 67, 85.
290 290. T. Fuoco, M. Cuartero, M. Parrilla, et al., Biomacromolecules 2021, 22, 949.
291 291. L. Teng, X. Xu, W. Nie, et al., J. Polym. Res. 2015, 22, 83.
292 292. R. Gref, Y. Minamitake, M. T. Peracchia, et al., Science 1994, 263, 1600.
293 293. G. Caponetti, J. S. Hrkach, B. Kriwet, et al., J. Pharm. Sci. 1999, 88, 136.
294 294. U. Edlund, A. C. Albertsson, J. Polym. Sci. Part A: Polym. Chem. 2000, 38, 786.
295 295. U. Edlund, S. Dånmark, A. C. Albertsson, Biomacromolecules 2008, 9, 901.
296 296. H. Zhang, L. Chang, B. Zhang, et al., J. Biomater. Sci. Polym. Ed. 2008, 19, 99.
297 297. J. Jiménez‐López, M. M. El‐Hammadi, R. Ortiz, et al., Pharmacol. Res. 2019, 141, 451.
298 298. R. Dorati, S. Pisani, G. Maffeis, et al., Carbohydr. Polym. 2018, 199, 150.
299 299. S. Pisani, R. Dorati, B. Conti, et al., React. Funct. Polym. 2018, 124, 77.
300 300. M. Alami‐Milani, P. Zakeri‐Milani, H. Valizadeh, et al., Pharm. Dev. Technol. 2020, 25, 704.
301 301. N. Jalilzadeh, N. Samadi, R. Salehi, et al., Sci. Rep. 2020, 10, 1.
302 302. W. Tao, X. Zeng, J. Zhang, et al., Biomater. Sci. 2014, 2, 1262.
303 303. C. E. de Castro, B. Mattei, K. A. Riske, et al., Langmuir 2014, 30, 9770.
304 304. L. Jiang, X. Li, L. Liu, et al., Nanoscale Res. Lett. 2013, 8, 1.
305 305. W. X. Gu, M. Zhu, N. Song, et al., J. Mater. Chem. Part B: Polym. Phys. 2015, 3, 316.
306 306. L. Montanari, M. Costantini, E. C. Signoretti, et al., J. Control. Release 1998, 56, 219.
307 307. S. C. J. Loo, C. P. Ooi, Y. C. F. Boey, Polym. Degrad. Stab. 2004, 83, 259.
308 308. J. S. C. Loo, C. Ooi, F. Boey, Biomaterials 2005, 26, 1359.
309 309. P. Plikk, K. Odelius, M. Hakkarainen, et al., Biomaterials 2006, 27, 5335.
5 PREPARATION, STRUCTURE, AND PROPERTIES OF STEREOCOMPLEX‐TYPE POLY(LACTIC ACID)
Neha Mulchandani Yoshiharu Kimura and Vimal Katiyar
5.1 INTRODUCTION
An intermolecular complex formed by macromolecules having identical chemical composition but different configuration of the repeating units is known as a stereocomplex (sc) [1]. The co‐crystallization of the stereoisomers PLLA and PDLA results in the formation of a well‐known crystal structure stereocomplex PLA (sc‐PLA). The sc‐PLA gained widespread recognition and acceptance ever since it was discovered by Ikada et al. [2] and patented by Murdoch and Loomis [3]. Stereocomplexation in PLA is attributed to the non‐covalent interaction of the enantiomeric macromolecular chains. The sc‐PLA crystals melt at a temperature (T m) 50°C higher than the homochiral (hc) PLLA or PDLA crystals [4]. Apart from the improved heat resistance, sc‐PLA has better mechanical performance and resistance to hydrolysis [5, 6] than PLLA and PDLA, allowing its exploration in pharmaceutical and biomedical applications. The homopolymers PLLA or PDLA have been utilized for short life applications such as agricultural mulch‐films, disposable trays and bottles, and nonwovens. On the other hand, sc‐PLA can be specifically adopted for high‐performance applications such as structural and engineering plastics [7]. Several studies have also made use of sc‐PLA for drug delivery application due to its improved barrier properties, which prevent the burst release and prolong the release of drugs [8]. The formation of sc crystals may therefore lead to the development of PLA‐based materials with enhanced performance. The molecular weight, optical purity of the enantiomeric PLA, and tacticity are the governing parameters for the sc crystallization; lower optical purity or higher molecular weight likely hinders the sc crystallization [9, 10]. The formation of hc crystals is often more kinetically favorable than that of sc crystals during the crystallization of high‐molecular‐weight PLLA/PDLA blends. However, enhancing the interchain interactions between PLLA and PDLA by covalent or non‐covalent means can improve the formation of sc crystallites [11]. Also, sc crystallizes much faster from the melt as compared with the α‐form. Researchers have been studying the varied crystal morphologies of sc‐PLA and the governing parameters for their formation. A preferential formation of sc can be attained by blending PLLA/PDLA in equimolar (1 : 1) ratio in solution. However, varying the ratios of PLLA/PDLA in the blend give rise to the formation of hc‐PLA (T m ~ 180°C) along with sc‐PLA (T m ~ 230°C). In order to improve the sc formation in non‐equimolar blends of PLLA/PDLA, several methodologies have been adopted, some of which are highlighted in this chapter.
5.2 STEREOCOMPLEXATION IN POLY(LACTIC ACID)
Enantiomeric PLLA and PDLA are synthesized from L‐ and D-lactides (T m = 97.5°C) that are derived from L‐ and D‐ lactic acids, respectively. Both PLLA and PDLA are semicrystalline in nature and develop unique morphologies in their block copolymers due to the competition between