такой род аргументации предпочитается Платоном и для него несравненно более «правилен» и «ясен», постольку его программу построения физического знания действительно можно назвать математической. Ее поддерживает лишь математическая теория и убеждение в том, что она-то и составляет основу физического мира. Напротив, на стороне соперничающей с ней нематематической программы – традиция, здравый смысл и опыт и, конечно, новая философия, онтология и теория знания.
Критика Аристотелем платоновской теории вещества была несомненно чрезвычайно плодотворной уже в том только отношении, что она вызвала лавинообразно нарастающее – и не смолкающее до сих пор – комментирование, истолкование, объяснение ее трудностей и неясностей. Эта критика способствовала развитию самой теории, усовершенствованию ее защитниками платонизма. Множество комментаторов пытались дать платоновским элементам такое истолкование, которое бы отбросило основные критические замечания Аристотеля. Это касается прежде всего аристотелевского сомнения в возможности объяснения качеств из «бескачественных» фигур, например, объяснения такого физического свойства, как вес, из невесомых «плоскостей».
Основные затруднения этой теории – в разрыве между геометрией и физикой. Поэтому платоновские треугольники интерпретируются как материальные тонкие пластинки. Видимо, впервые такую интерпретацию дал Мартин: «Мы рассматриваем треугольники и квадраты Платона, – говорит он, – как тонкие листки телесной материи» [28, c. 242]. По существу эту же мысль высказывает и Ева Закс: «Нельзя отрицать, – подчеркивает она, – что треугольники, из которых Платон “составляет” тела, сами являются телами» [118, с. 215]. Однако такая интерпретация была подвергнута критике, потому что не слишком хорошо согласовывалась с текстом «Тимея» и с духом платоновского учения вообще [121, с. 9]. Кроме того, надо учесть изменения в самой физике, которые также, несомненно, способствовали эволюции в интерпретации геометрической теории Платона. Новые интерпретации развивают, с одной стороны, динамические истолкования платоновских фигур, а с другой стороны, дают им статус формальных, идеальных компонент или принципов. Согласно Мюглеру, «στοιχεῖον Платона – это оказывающая сопротивление поверхность, поле сил: в таком случае ни пустота внутри элементарных полиэдров, ни проблема веса не приводят больше к затруднениям» [106, с. 121]. Такое же стремление отвести критическую аргументацию Аристотеля мы находим и у Клэгхорна. Разбирая критическое замечание Аристотеля, указывающего на невозможность образования физического тела из математической поверхности, Клэгхорн говорит, что «Платон должен был бы согласиться с этим, так как плоскости прежде всего несут объяснительную функцию и нет указаний на то, что они сами по себе образуют реальность. Они указывают на границы тела и дают поверхность платоновской материи (receptacle), внутри которой нечто должно возникнуть» [44, с. 31].
Истолкование платоновских