Neil McCartney

Properties for Design of Composite Structures


Скачать книгу

needed for the applications to be considered in this book, it is required to introduce in the next section strain tensors as state variables, rather than the specific volume Ω introduced in (2.65) and (2.67).

      2.10 Strain Tensor

      p overbar equals x overbar Subscript upper K Baseline i overbar Subscript upper K Baseline comma p equals x Subscript k Baseline i Subscript k Baseline comma(2.70)

      where summations over values K, k = 1, 2, 3, are implied for repeated suffices. The corresponding infinitesimal vectors are written as

      As

      i overbar Subscript upper K Baseline period i overbar Subscript upper L Baseline equals delta Subscript upper K upper L Baseline and i Subscript k Baseline period i Subscript l Baseline equals delta Subscript k l Baseline comma(2.72)

      it follows that

      Any vector v may be written as

      v equals v overbar Subscript upper K Baseline i overbar Subscript upper K Baseline equals v Subscript k Baseline i Subscript k Baseline period(2.74)

      Define δKl and δkL by the relation

      delta Subscript upper K k Baseline equals delta Subscript k upper K Baseline equals i overbar Subscript upper K Baseline period i Subscript k Baseline period(2.75)

      It then follows that

      v Subscript k Baseline equals delta Subscript k upper K Baseline v overbar Subscript upper K Baseline and v overbar Subscript upper K Baseline equals delta Subscript upper K k Baseline v Subscript k Baseline period(2.76)

      It is clear that

      delta Subscript upper K k Baseline delta Subscript k upper L Baseline equals delta Subscript upper K upper L Baseline and delta Subscript k upper K Baseline delta Subscript upper K l Baseline equals delta Subscript k l Baseline period(2.77)

      The time-dependent deformation that transforms the undeformed region B¯ into the region B(t) may be expressed as

      x equals x left-parenthesis x overbar comma t right-parenthesis comma x overbar equals ModifyingAbove x With bar left-parenthesis x comma t right-parenthesis period(2.78)

      It then follows that

      d x equals StartFraction partial-differential x Over partial-differential x overbar EndFraction d x overbar comma d x overbar equals StartFraction partial-differential x overbar Over partial-differential x EndFraction d x comma(2.79)

      where the increments are taken at some time t such that dt = 0. In component form,

      In the undeformed body, on using (2.71) and (2.73), the increment of arc length ds¯ is such that

      where ckl is Cauchy’s symmetric deformation tensor. Similarly, for the deformed body, the line increment ds¯deforms to an increment ds such that

      where CKL is Green’s symmetric deformation tensor. In dyadic form

      d s squared equals d x period d x equals left-parenthesis d x overbar period ModifyingAbove nabla With bar x right-parenthesis period left-parenthesis d x overbar period ModifyingAbove nabla With bar x right-parenthesis equals d x overbar period upper C period d x overbar comma(2.83)

      where ∇¯ denotes the gradient with respect to the material coordinates x¯, and where the symmetric Green deformation tensor C may be written as