Neil McCartney

Properties for Design of Composite Structures


Скачать книгу

m Baseline Over a squared EndFraction comma"/>(4.128)

      and on subtraction that

      The substitution of (4.129) into (4.128) then leads to

      From (4.127) it follows on addition that

      and on subtraction that

      The substitution of (4.132) into (4.131) then leads to

      It now follows from (4.129) and (4.132) that

      and from (4.130), (4.133) and (4.134) that

      left-parenthesis StartFraction 1 Over mu Subscript m Baseline EndFraction plus StartFraction 1 Over mu Subscript t Superscript f Baseline EndFraction plus StartFraction 2 Over k Subscript upper T Superscript m Baseline EndFraction right-parenthesis StartFraction upper B Subscript m Baseline Over a squared EndFraction equals minus StartFraction k Subscript upper T Superscript m Baseline plus mu Subscript m Baseline Over k Subscript upper T Superscript m Baseline EndFraction left-parenthesis StartFraction 1 Over mu Subscript m Baseline EndFraction minus StartFraction 1 Over mu Subscript t Superscript f Baseline EndFraction right-parenthesis StartFraction tau Over mu Subscript m Baseline EndFraction comma upper C Subscript f Baseline equals 0 comma(4.135)

      As Cf=0, it follows from (4.115)–(4.117) that the stress and strain fields are uniform within the fibre. From (4.133) and (4.134)

      On substituting (4.136) into (4.137) to eliminate Dm, it can be shown that

      upper A Subscript f Baseline equals zero width space zero width space zero width space zero width space StartFraction mu Subscript upper T Superscript f Baseline k Subscript upper T Superscript m Baseline plus mu Subscript t Superscript f Baseline mu Subscript m Baseline Over mu Subscript t Superscript f Baseline k Subscript </p>
						</div><hr>
						<div class= Скачать книгу