Irene Roberts

Neonatal Haematology


Скачать книгу

sensitivity to and dependence upon haemopoietic growth factors, such as insulin‐like growth factors, compared with adult cells20,21 and a different pattern of mature cell output.9,16,18 Reflecting this, fetal HSC also have unique gene expression programmes,1315–17,22–26 which have recently been shown to be important in the leukaemic transformation events that lead to infant acute lymphoblastic leukaemia (ALL).27

      Fetal haemopoietic progenitor cells

Schematic illustration of immunophenotypically defined progenitor populations along the B cell differentiation trajectory in the human fetus.

Haemoglobin production Embryonic haemoglobins (globin chains) Gower 1 (ζ2ε2) Gower 2 (α2ε2) Portland (ζ2γ2) Fetal haemoglobin (globin chains) Fetal haemoglobin (α2γ2) Adult haemoglobins (globin chains) Haemoglobin A (α2β2) lower Haemoglobin A22δ2) considerably lower
Red cell membrane Gives resistance to osmotic lysis Altered expression of receptors (e.g. insulin) Increased lipid content and altered phospholipid profile More prone to oxidative damage Altered glucose transport Weak expression of A, B and I blood group antigens Increased variation in red cell shape (poikilocytosis) Red cell ‘pocks’ due to hyposplenism
Red cell metabolism Glycolytic pathway Increased glucose consumption Altered enzyme levels, e.g. low 2,3‐DPG and PFK Pentose phosphate pathway Increased susceptibility to oxidant‐induced injury Lower level of glutathione peroxidase Reduced ability to generate NADPH

      2,3‐DPG, 2,3‐diphosphoglycerate; NADPH, nicotinamide adenine dinucleotide phosphate; PFK, phosphofructokinase.

      Erythropoietin production in the fetus and neonate

      The principal cytokine responsible for regulating erythropoiesis in the fetus and newborn, as in adults, is erythropoietin (EPO).30 Since EPO does not cross the placenta, EPO‐mediated regulation of fetal erythropoiesis is predominantly under fetal control. The liver is the main site of EPO production in the fetus31 and the only stimulus to production under physiological conditions is hypoxia with or without anaemia (reviewed in reference 32). Little or no EPO is produced under normoxic conditions, but hypoxia very rapidly triggers expression by up to 200‐fold within 30 minutes, at least in hepatocyte cell lines.33 This explains the high EPO levels in fetuses of mothers with diabetes mellitus or hypertension and in those with intrauterine growth restriction (IUGR) or cyanotic congenital heart disease;34 EPO is also increased in fetal anaemia of any cause, including haemolytic disease of the fetus and newborn (HDFN). This, and the switch of EPO production from fetal liver to the neonatal kidney, may in part explain the physiological delay in triggering the production of new red blood cells, which is often not evident until the second month of life, even in healthy babies.

      Haemoglobin synthesis and red blood cell production in the fetus and newborn

      The rates of haemoglobin synthesis and red blood cell production fall dramatically immediately after birth and remain low for the first 2 weeks of life, probably in response to the sudden increase in tissue oxygenation at birth.35 In healthy neonates the physiological rise in red cell production starts several weeks later, so that by 3 months of age a healthy infant, whatever the period of gestation at birth, should be able to produce up to 2 ml of packed red blood cells every day.35 Studies in preterm neonates have estimated that over the first 2 months of life the maximal rate of red blood cell production may be closer to 1 ml/day. This is based on the observation that preterm babies receiving therapeutic EPO are unable to maintain their haemoglobin if more than 1 ml of blood per day is venesected for diagnostic purposes but can do so where sampling losses are less than this.36