Пол Стейнхардт

Невозможность второго рода. Невероятные поиски новой формы вещества


Скачать книгу

– Калифорнийский технологический институт. – Здесь и далее, если не указано иное, прим. перев.

      2

      Интегральные молекулы (фр.).

      3

      Строгий термин – “пространственные кристаллографические группы”.

      4

      Несоизмеримыми называют величины, отношение которых выражается иррациональным числом, как сторона и диагональ квадрата.

      5

      Пенн – сокращенное название Пенсильванского университета.

/9j/4QAYRXhpZgAASUkqAAgAAAAAAAAAAAAAAP/sABFEdWNreQABAAQAAABQAAD/7gAmQWRvYmUAZMAAAAABAwAVBAMGCg0AAAjEAAATzgAAG/MAACQ1/9sAhAACAgICAgICAgICAwICAgMEAwICAwQFBAQEBAQFBgUFBQUFBQYGBwcIBwcGCQkKCgkJDAwMDAwMDAwMDAwMDAwMAQMDAwUEBQkGBgkNCwkLDQ8ODg4ODw8MDAwMDA8PDAwMDAwMDwwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAz/wgARCADzATwDAREAAhEBAxEB/8QA6AABAAIDAQEBAQAAAAAAAAAAAAYIBAUHAwIBCQEBAQEAAAAAAAAAAAAAAAAAAAECEAABAwMDBAIABwEAAAAAAAAEAgMFAAEGFBUHIDBAFhATYHCgMRIkNBcRAAEDAQMDDwYLBAYLAAAAAAECAwQAERIFITGBIEFRYXGRIjKSEyPTNAY2MECx0TMUocFCUmJygqIkRBUQ8EOTcOGyY8MlYPHSU6NUNUUWJgcSAQAAAAAAAAAAAAAAAAAAAKATAQABAwEHAgYDAQEAAAAAAAERACExQSAwQFFhcYGRwRBgcPCh8VCx4dGA/9oADAMBAAIRAxEAAAG/wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABoSspjnoAAAAAAaQgy39TZgAAAAAAAAHFzjhnkks7nAAAAAH4ceXnhuiHF4QAAAAAAADQlbiNHWjqqaYitdDgAAADQHBlwjsKdEOeGoXv4AAAAAAANMfz8qa2bQAhMTOvsAAAGniUS2QTOAKnrdM+gAAAAAAAV/sjFn0AeBGCXAAAAEOlthH6ARs5MtogAAAAAAAYhUjWd6ACIEqPUAAAGCSSXtUACq63AM0AAAAAAAHFbOfWewB8kOJmAAAAQhbX5ZABgld1t2AAAAAAAD5Kkam0QARY3pmAAAA8j0lsDAArUtliSAAAAAAAA5bZx6zOABCiagAAAEJW0GW2APgq6tygAAAAAAACqup6oAI+ZhtAAAAfhrpbJQAODL1o6IAAAAAAACEJXrU24AIWTQAAAAiRYDNloAKprdEAAAAAAAArPZhWADVGKb8AAAAj0toYAHLFyztoAAAAAAAI+Vc1nfAAhRNQAAADQnVM3pQAKnrdUAAAAAAAArzZH7P0AwzRkoAAAAIjLa6ABDiBLZMAAAAAAAGAVL1nfAAhBJj6AAABryQy9kgAVjW6ZkAAAAAAAA4bZB7PU+CMmIZxkAAAAEIls5Hqa2q+r5xZk6wAAAAAAADzKj6nokfPskplgAAAA8DLlmEvHSQljyRgAAAAAAAA4sVh1JISBP0AAAAAEFXe5vbDuJ9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAqadsNwehBDemefJsTFPomQAAAAAAAAAAAAABUgnBzAh9WFjl50A0pPzh51k72AAAAAAAAAAAAAAYRimQYx7nua8EJIidpNqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD//aAAgBAQABBQL8sZCUjopmU5UG/knKOS1J9m5Lr2bkuvZuS69m5Lr2bkuvZuS69m5Lr2bkuvZuS69m5Lr2bkuvZuS69m5Lo3OM7jW/+uZFQbjzwfhzOfY1DUrJM7yegeOBnHdCE9L9yXzrHomtzzvJKA46j7OjBDZHnXgyEnHxTJ/J7b718ezbKKiMLx+G+JAtIIeOCKaE7J8pHRbZHIKzXfVcqyGonFYKF+MpmLQcHxxCXisf8CQMRHheqLk1iwpYKNHMVo5itHMVIBSphNgZZNtHMVo5itHMVo5itHMVo5itHMVo5ijrSoQ8FgQBLQ4w4jXzkNr5XmVrWtbwMwLuQ/a1rW+XHEtNxbd19r6N5nf26JiSaiIzjKLdsF4D7zY7I7izSeiTWpxSEJbR2CX0jMYWApsPozl52alhx2hB/AzI66R20WbR83vZNo+1yCOyehcic00hhr5KJaDG45EdlZDwL3tayybysr0Sjt7NMNWYZ7C1pbRhgiiHejkWQeWxERrMPGeBlsho4wdmzDPQN/cP7MwtxywAjYAfypSUpw5tWT5d4MmVus50ST/0jBsacfs4sPuUv0chTCo6ExWFTAQXgZDI7bFgs/QP0f7ZLszJN2RIOOtFxnRHp9vz/wAHIytxmeg1/TjxrH0DdmIH3jIujMpnZIHj+D2THfAlDkxwACFfX0Ef3D+zJFaQTFY3bonolE+3Z14OXF6oz9ugh6zDMWzdLXZQPvM90T8q3CRHGcO4JEeASQ2IOIpwp3oknEuv2JETbVC1qha1QtaoWtULWqFrVC1qhaKkgxR8NuCOFuUdW5R1blHVuUdWVkpyqfabbZb8DMjb3QhNkIpSkos7Kspv/CTLpuJETbbAa2wGtsBrbAa2wGtsBrbAa2wGtsBo2IEk5FGNwraPXoeiorHAWT8mxu7o2D5XPqxzDYbGb+ApSUJ1CpOReMHHrXFk0mMW7dphli3accS03hganVS+XwELVsozDJqD4yUW9HREZENeFncmVGwYrky8yyy0zWrcrWOVrHK1jlaxytY5WscrWOVrHK1jlaxytY5WscqeOOuKDjOdTYsNx5jcRVrWtb8vgjssXil8piGBCJ2JFizJuLj75NkS40jH3xlR4GSQkmQ3k0G6bJzUdD0nIYdUTG5BDy7vm4pjxcxiccsSLzBDKS8fJUQaIb9AefySXjQZssCQfzQwk6PkihnMt+xlXExL4x2Y+aOOOIyUACdZQoy0qjwFtkiCmttMMjtjxseG4mNjkFWxSMclz8JSoQYEIO/4e//aAAgBAgABBQL9Gx//2gAIAQMAAQUC/Rsf/9oACAECAgY/Ahsf/9oACAEDAgY/Ahsf/9oACAEBAQY/Av6MefxGa1Da1lOqsts+aM50UuP3dw53E3syZLgKW90IHCOm7SVDuvEsULRwVD/HrwvE3ldfXheJvK6+vC8TeV19eF4m8rr68LxN5XX14XibyuvrwvE3ldfXheJvK6+vC8TeV19eF4m8rr68LxN5XX14XibyuvrwvE3ldfXOz8Dw6Gg8Uum7budPlr/p+H7HEd62or0ln3eQ6yhciP8AMWU2qToPmikLm+/SU/lYnSHSrijfq7gOGDA4C/zz3Gs2QtY/sp01753jxF/GpisrgKlBGlVt874pjC4EVqPh+H8J9DSQATr22Z9YeVUgy/fpIye7RekNu2rijfqzC4Ce7uHr/NyPaEbV4W7ydNe947Mfx2YrKsuqIR6So79NQ4sZtrAe6otU02kBsuJOwMnCXvhPmXvGIzGobWsp1Vlu0kZzoowu6+FP4zKORDykqCN0IHDI3btXu8eL/pkFf/bWNjYKEcHlEmkqYhCRIT+akdIvRrDQP2PyTnQngDZUc1Klu5X5x5xSjnu62/n8lz2ITGoiNbnFZTuDOdFKid1sHfxd/wD5haSlsbdgy2bt2r/efGzDiqz4XE9Bs4P9qkqhQEc+PzbvSO8o5tH7Js4Gx+7zUQf3q8id7PTcp4fjcYPvT6jnuH2Qt3OFp8xkzHMzCLQNk/JGk0Z+IYo9KdeyjnrVm7rWqKra5qFi70Ns5Shm8gbyV14jmcpzrK8RzOU51leI5nKc6ymIH/kEtaEm+9apZ/xNiglPeGWlKciQFL6yvEczlOdZXiOZynOsrxHM5TnWV4jmcpzrK8RzOU51leI5nKc6yvEczlOdZXiOZynOspT6u8MxVmRKL7gtJ+3TOK485IxSbJHOc2+s3QDxbdc7+iksRWG4zKeK00kJTvDUYX3ZbN6BhnT4oRm+crLuWJG2aAAsAzDzGJg7R/vpXxD496gBkAzahbiuKgWmnZjnHfPB3PJRMN40aL0svcGU+rTqZmJPcWK2VBPzlZkp0nJU3vHN4U7HXlKSs5+bCjaftKt+DzF1903W2UlaztCpeJvceUs3RsD98mpZhN8Z42r3KS2nioFg8i6+rM2m3TrU9ib4/EYiq0E/MB+M6nBu50JfClOpenlOW6nWt+qm1W9TEVhNxiM2lplGwlAsA8xj4WyelnKtc+ok/GfRSG05kCzUFSjYE5SafnLGc3Wh5KDgzJyvLCnyNZP9Qy02y2LrbSQhCdgDINQ/LfVcYjNqddV9FItNYz3xnJ6WY4piCDlupzqst2BYkafMSSbAM5qXiR9kDzcUfRGb4NSmOjK5INlm1TbQ+QMu7r+RW4s2JQLyjuVNxx9PCeUWo1usPlerU4f3ag8KbjjyUqR9C8AkfaV6DULDI/s4bQRe+cflK+0cvmJjtnp555pA+j8r1aaQ3sDhbupdlHK0xwWvJR8Oj8J+csJCdq311HhtcSOgJt2TrnSdQVKISlItUo5gKxXvW6LYeH/h8Lt2SLo3kZTtq8ydcBvRcP6JnYJGvv6kgcd3gp+OkN/Kzr3T5KVi6xaxD6OL9Y/1enUmGxb75jCvdmUpz3P4hGjJpqDh10B9KecmEa7y8qt2zNo8xfeSbHneij/WVr6BlpIPHVwl6dTssw/T/r8lzaPayTzbYG3nqNEs6QC8+fpqz6l2WekwnuxYGvmlxJN3fXarcT5k3DSbY+GjpNtw5/iG/qVr+UeCjdNJt47vDV8XkudPCiYTl2ivW+H0amXIQq7Kf/Dw/rr19AtNRucTZMxD8VK2eGOAnQmzTb5jJmK/hJ6NOyo5EjfpT7pvPSTfWo7epbjZ2mOE75J1wcc8FvdNNFY/ES+ne2eFxRvamDgo6TC8B6XENgkWFY0m6jf8yi4Q2eA100rdOYb3pqzUOOn5AyDb1qU+vK5IN4na8lFgWXosPpZWxk1vi1M3EV2WsI6FJ+U4ciBv07jMu1U/HnOfWtXG5q03eUSVaR5i9JdNjbCCteipOIv+1lrJ0almHfCEW3nlE2WUEiQ0AMgF8V2lrliu0tcsV2lrliu0tcsV2lrliu0tcsV2lrliu0tcsU6+qS1wBkF8ZTrU7PkTY/vOIKvZXE23Bm19c12+P/NT667fH/mp9ddvj/zU+uu3x/5qfXWC91MOkJejc5z2IvNKCgLM+XNalAOk02y0gNtNJCG2xmCU5AB5jGwhk9JLUFv/AFBm+H0UlCcyRYP2XlqCUjOTVxhJkL1gM1cNfujR+SM/rrhpLqtdRJHor2P3leuvY/eV669j95Xrr2P3leuvY/eV669j95Xrr2P3leuvY/eV669j95XrqDg7TPHXffN5WQb+xSG0QrEIASkX3Mw+1XZP+I5/tUX5iW4rKc7jrykj4VV7n3fwR/G5i8jd0uhBO0LSpW9XO4o613fhL/KItWuz6t4/eVopTsJDjsxxFxyY8q1V3PYALABk2PMVLWbqUC1StoVMxNfFUq5HGwkZvgrpHBe+YMpqyHHsT/vVfvZV+bIU6fmDNVjTYR6d/wAmtxZsSgWq0VMxt8cOSotx/q6/qpSZc1LkhP5RjpHNIGQabKKO6+C+5xDk/UpFh3lKsRo4VJmd68ZexaRrsNqIRuX1cKzcCa5nDYLUNHyubTlV9ZWc6fM1e6Q3pbkxwMK5oE3UnPbYDnzUht2C/CaAzJSbT++7Vpw6Q6r5y0/FXYJHIrsMjkV2GRyK7DI5FdhkciuwyORXYZHIrsMjkV2GRyK7DI5FdhkciuwyORXYZHIptiLhkp1yS4EXQhWXYGQHPTEadNHdzCUJCUxG8jhTtpSbTt3laKS4qL+pSh/Hl2LFu0ji/BpoACwDIAP6P0d6h3gEhbbLkh7DHorIbUlpRChfQEqGRNYbJmyPdl4lGRKajBK3F3FpBtuoSTYLc9frT01P6WQkiWgKWOEboyIBOesPTLlho4q4lrD+CpXOKVZZxQbM+vUbDI0liFIktl52Y+hT1xFt0BtlvhOLUbcm0afmjH3MaQpalyZj91AbKRwk83YnmwNg0IsKcHX1JKmkFK0X0jOUFaQFaKGHonpMouFlIurCFODOhLhTcJ2gaj/qDymjKUUx0oacdKikWnI2lRzUMdEz/KlGwSyhY/ic1xSm9xsman2MOnIkuxxecQAocH5ybwF4bYyefYY1Jx6SjCJCV87hTTbSLUh1Vqedu37DXeFExbcNDsKD+kF0hCfd2UFLgSTsKpUcp/yzG+91kBOYKiLfBybXBNJlywf/AEf3PDypWT8QJgQ4rkITv1h86cpLMeTgzkaE84bE8+h68Rade4qv/psjCemhSHIojqaypWplKfeymzPXclvBnmn3hibD7SWSFFERCFc7bZmFllFrCJ+GSWXJTCYUZu8uWZKXhbdKV2ZDn4Oa2sDYU+0j9KjSpUkrWBdLwS02MuubVU4m+lXNu9Km22wHErcoruqvCnmpCI0OYuetghQDC0JDNt36ebz5EeKw3Gjt+zYaSEITr5EjJSUzoTExKDagPtpcsO1eBphK47S0xlBcZJQCG1JyBSdgipDK4MdTUxfOS2i2kpdXk4SxZwjkGeuZmRmpbJztPIC07yraSywyhhlGRDTaQlI3AKcdiQI8V132rrTSUKVukDLSpyIEdE1fGmBpIdP27LaxjFcQjRsTOKFgtMyI6F8zzLfNmxSr3Gst1q7yMYWuPETjrkFbMQNc00x7qpJVxLbb1hOYZadMOGxFL5vPlltKL52VXRl/0f8A/9oACAEBAwE/IfpjkW0Q3kZHoFo9yuR/SwdDIQEbJJwyN8wYMGDBgwYMGDBgwOZUD2SzXapyRibtflS/q6JjpPWThIQLKxP0Ei1GfSpUFwX0yGAo9dPVVg3U6eSKH/CoiVjn400llm+d4oCrAZa0NOh6CQuZy6VP0MZrrqRj/vrVFInzc9Qj0rM7Ed+QXCDzXBLbvxDZdyHoFqSWWQvE/hFRedGDXMgLojalZLaI5jUJP2vhAC3X0B9WpEe/iX+T5bq2220IfO9A0OO26C1+Y0FF0CSI7OfVof5IhzJfxnwND3S/6h9CkRxr7EuyvfleWcDHAsbr28oFCtUpk1ki6U3WUGt5oTYCBAiYCSCLf0/tReYAsAsAbkECBAgQIECJ5UdNJM+9EbW82wizxCzDSmPGaLsIbDJkdpAonnGjjQJhQFgDQ4GydUQ0LjdiaCTggOhsMnCPBpUFpaLkW8ebeN1MgkdGwLHO3fQAAEBYDYgUXsx7qyh+uoLZzCddhcD0Eq2MtBB1iu4OgAO2yi1r0g2n+/FErAD6G5zMoHPAeW1TtF54d7j6bLfTnBKQ6Dk/0op5V4MvuQcDYiwzS0n7bqx8QeNiPwlWgZat4Edof4Qeu6bllKi1ew+iulPenB6Gx0JRGpPQrsbWJdGB3IHAgmPKWANWphWWNLdjjU9V2be7kZu92CsccC56nl3M7B+QBLXZcAmFH4HZ2bGOQwxYOlm/KSjk6Tar9VV1eBTAGmef6NBPzec1d2f6wC6Hu+d0aULnQD191YVi4f6I7CL3IQC6q4ilFrQCExTTIGgPBcu8OQZHeTPINme/r8OXpU9EM/vvTG5UBVgLq0uv4yyESdpvcbLNp0leiAZuPHTosK3OKalryHA2qd1o2zyeFQm/tNHjZMnskv27G6RTuuiNDxbzUChF2t7048bOFwRka8yB1A4K/tjDEB9P4NlD7HtN6ZqUGMzm+HpurRwg8i2+b+2ysznqBpHt+GoHnuliUth1g4XNwMGMrJ/uCo7xPPMpl7zPnZt/0Ktp9j13U2oL+v8ATNWi7q4Qu9oeV2YNwkMvrRHqJccEmPSHkXu1/hQAAQFg2LidzmKw8tZq2GeT1Zd03qAqxV3t5NYsbCjyv7zrJ6S1IqrQSSyZkBk5HAznkmsGYOrgq4Z2fLB008bMKoIweTyPaiJWCshjWvuH3r7h96+4fevuH3r7h96+4fevuH3r7h96jAHekgzq0AQ9McjqkXH02TRo0aZQYXILaZKY5BmhZHrAkByA4GGzAei2vcTQcIMHQ+C3IRwHlqSmsBiXeJfBWlugY9h/JKgyS/oYM3VFFFFFFFFGE1DsYy9k2o8FnaCA+CjWX8n5SMvSpLCe14vQnes4L5YuEU/OUvqle0iIWRiXNeBNqo7AEq1ApnL6L+jytTQIfoTHml657ff/ANUJ5gtnl9gqMKwoXd1d3cyR26CazOQ9CyzzHg10kQpeSJe+jSTGF5IIk3AqzJKbb9chpUn+4EAixJL9U8GQAuiHVOBZpvNXJSpi1YCb9fCozmOU/CKDIADBKv26v26