Ибратжон Хатамович Алиев

Физика ускорителей заряженных частиц. Учебное пособие


Скачать книгу

электронные ускорители на несколько сот МэВ. Крупнейший в СССР линейный ускоритель электронов на энергию 1,8 ГэВ находится в Харьковском Физико-техническом институте (ФТИ). Для развития физики линейного ускорения электронов много сделали Е. Гинцтон, Л. Смит, В. Пановский, Р. Нил, а в СССР – А. И. Ахиезер, В. В. Владимирский, Я. Б. Фейнберг, И. А. Гришаев, О. А. Вальднер, Н. А. Хижняк, Р. М. Воронков и другие.

      На развитие линейных ускорителей протонов и иных тяжёлых частиц решающее влияние оказала работа Л. Альвареца – сотрудника Э. Лоуренса, использовавшего в 1947 года для ускорения протонов до 32 МэВ многозазорный резонатор, или систему трубок дрейфа, расположенных в общем баке. Система эта оказалась настолько удачной, что с малосущественными изменениями применяется и теперь для ускорения до средних энергий, меньших 200 МэВ. Однако при ускорении протонов до энергий свыше 100—200 МэВ система Альвареца оказывается малоэффективной, а система типа диафрагмированного волновода, работающая при скоростях порядка скорости света, ещё не может быть применена. Именно из-за этого долгое время энергия в линейных протонных ускорителях не превышала 100 МэВ, а сами они служили, главным образом, как инжекторы для больших протонных синхрофазотронов.

      Одновременно с созданием крупных ускорительных установок резко увеличился интерес к теории ускорителей. Это вполне объяснимо, так как без чёткого понимания всех особенностей движения частиц проектирование и сооружение дорогостоящих уникальных машин было бы просто невозможным.

      Повышение энергии ускорителей пока что неизбежно связано с увеличением размера установки. Если допустить, что размеры циклического ускорителя линейно растут с максимальной энергией, а это не так уж далеко от реальности, то, скажем, масса магнита должна расти как куб энергии. Возвращаясь к характеристикам синхрофазотрона ОИЯИ, нетрудно видеть, что даже столь прозаические трудности перерастают в принципиально непреодолимые, если на тех же основах проектировать магнит хотя бы на 30—50 ГэВ. Для того чтобы уменьшить поперечное сечение магнита, нужно, прежде всего, уменьшить сечение пучка, т.е. резко улучшить фокусировку частиц около расчётной траектории. Сделать это за счёт известных механизмов оказывалось невозможным. Поэтому очередным качественным этапом в истории ускорителей следует считать появление сильной, или жёсткой, фокусировки, принцип которой был сформулирован Р. Курантом, М. Ливингстоном, и Г. Снайдером в 1952 году.

      Уменьшение размеров пучка достигалась при этом за счёт серьёзного усложнения магнитной системы, да и сам принцип нельзя считать очень наглядным с физической точки зрения. Последнее обстоятельство оказалось совсем немаловажным: ещё за два года до этого сильная фокусировка была предложена тогда неизвестным греческим инженером Н. Кристофилосом, но его работа в рукописи не привлекла никакого внимание и осталась неопубликованной. Тем не менее