колбочка поглощает фотон, ее мембранный потенциал на короткое время падает, и постоянный поток молекул на мгновение приостанавливается. Второй слой нейронов, биполярные клетки, считывает эту паузу как сигнал и преобразует ее в изменение своего потенциала. Некоторые биполярные клетки предпочитают темноту, поэтому они преобразуют эту химическую паузу в падение своего электрического потенциала; другие жаждут света, поэтому химическая пауза вызывает увеличение их потенциала. Эти первые два слоя нейронов с помощью химических сигналов превращают свет в напряжение, но при этом между ними не происходит обмена импульсами.
Второй слой зрительных нейронов передает сообщение по эстафете третьему. И здесь опять используется тот же механизм, только наоборот. Биполярные клетки во втором слое постоянно высвобождают молекулы на синапсы нейронов третьего слоя, но на этот раз их количество пропорционально потенциалу возбуждения биполярного нейрона: чем выше потенциал, тем больше молекул. В свою очередь получение этих молекул пропорционально изменяет потенциал нейронов третьего слоя. В процессе передачи от второго к третьему слою потенциал возбуждения превращается в концентрацию химических веществ и снова в мембранный потенциал. Многие нейроны в третьем слое представляют собой ганглиозные клетки – именно они общаются с остальной частью мозга, и для этого ганглиозные клетки превращают свой электрический потенциал в бинарные – «все или ничего» – импульсы.
Даже из такого поверхностного описания ясно, что сетчатка – это не просто пассивный фотодатчик, а сложный мини-мозг, вычислитель, состоящий из множества комплектующих [26]. Фотодетекторами у людей работают три типа нейронов-колбочек, чувствительных к трем соответствующим диапазонам длины световой волны, которые мы описываем как красный, зеленый и синий. А еще нейроны-палочки, позволяющие видеть в темноте, которых намного больше, чем колбочек. Итого по крайней мере девять типов биполярных клеток во втором слое плюс сложная сеть, образованная горизонтальными нейронами, которая контролирует поток молекул от колбочек ко второму слою, и более сорока типов амакриновых нейронов в третьем слое, чья работа состоит в управлении потоком молекул из второго слоя в третий. Из этих пятидесяти с лишним типов нейронов в первом и втором слоях сетчатки подавляющее большинство не используют импульсы для отправки сообщений.
(Отсутствие импульсов в системе нервных клеток глаза означает, что его нейроны не могут выполнять логические операции, столь любимые Маккаллоком и Питтсом. Когда в 1950-х годах друзья Питтса из Массачусетского технологического института представили первое веское доказательство того, что во взаимодействии нервных клеток глаза бинарная логика отсутствует [27], Питтс с отвращением сжег свою диссертацию, посвященную логике работы мозга [28].)
Если такое количество нейронов сетчатки спокойно обходится без импульсов, почему тогда другие